java-redis-雪崩

2024-09-08 09:20
文章标签 java redis 雪崩

本文主要是介绍java-redis-雪崩,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Redis 雪崩问题

Redis雪崩 是指在 Redis 缓存系统中,当大量缓存同时失效时,所有请求直接打到数据库,导致数据库瞬间压力激增,甚至崩溃的现象。雪崩问题通常出现在高并发的系统中,因为缓存的失效导致后端数据库承受不了巨大的请求量。

具体表现:
  • 大量缓存同时失效后,所有流量直接访问数据库。
  • 数据库承载过大的并发量,导致性能急剧下降,甚至崩溃。
  • 之后,当 Redis 缓存恢复正常时,由于数据库崩溃或者性能下降,依然无法正常服务。

一、Redis 雪崩的原因

  1. 大批量缓存同时失效:当 Redis 中的大批量缓存设置了相同的过期时间,并且过期后没有及时重新生成,所有原本应从缓存中获取的数据都会直接从数据库中请求,导致数据库压力瞬间增加。

  2. 缓存服务器宕机:如果 Redis 缓存服务器因为某种原因宕机,所有请求将直接访问数据库,这可能会导致数据库无法承受高并发的请求,进而崩溃。

  3. 网络问题:Redis 服务在某些时段因为网络原因无法连接,导致缓存服务不可用,所有请求也直接打到数据库上,可能引发类似雪崩的情况。

二、Redis 雪崩的解决方案

  1. 缓存预热:在系统上线之前,可以提前将一些常用数据缓存到 Redis 中,避免上线后大量请求直接打到数据库。这可以通过后台线程预先加载一些热门数据,也可以手动设置缓存。

  2. 设置不同的缓存过期时间:如果所有的缓存数据设置相同的过期时间,当缓存到期后,可能会出现大量缓存同时失效的情况。为了避免这种情况,可以为不同的缓存设置不同的过期时间,或者在设置缓存时加上一个随机的时间差。

  3. 缓存永不过期:对于一些热点数据,特别是经常被访问但又很少变化的数据,可以设置缓存永不过期,同时在后台更新缓存。

  4. 缓存降级:当 Redis 宕机或者出现异常时,可以使用缓存降级策略,允许某些非核心数据的读取失败。也可以通过服务降级手段,限制对数据库的访问,从而保护数据库。

  5. 互斥锁(防止击穿):当大量缓存同时失效时,如果多个线程同时请求数据库并写入缓存,可能会导致数据库压力剧增。可以使用互斥锁的方式,确保只有一个线程能够更新缓存,其他线程等待缓存更新完成后再读取缓存。

  6. 数据持久化与集群:使用 Redis 的持久化机制(如 RDB、AOF)或搭建 Redis 集群来保证缓存的高可用性。当某个节点失效时,可以自动切换到其他节点,避免缓存服务器宕机导致雪崩。

  7. 请求限流和熔断:对系统进行限流和熔断保护,当缓存失效时,限制对数据库的请求数量,防止数据库过载。

三、解决方案的具体实现

1. 缓存预热

通过提前加载一些常用的缓存数据,避免在系统刚启动时,所有请求直接打到数据库。这可以通过手动加载或者后台任务实现。

@Service
public class CachePrewarmService {@Autowiredprivate RedisTemplate<String, Object> redisTemplate;public void preloadCache() {// 假设我们要预热一些数据String key = "hot_data_key";Object data = loadDataFromDB();  // 从数据库加载数据redisTemplate.opsForValue().set(key, data, 1, TimeUnit.HOURS); // 设置缓存,并设定1小时过期}private Object loadDataFromDB() {// 模拟从数据库加载数据return new Object();  // 返回数据库中的数据}
}
2. 随机过期时间(解决大规模缓存同时失效)

我们可以通过在设置缓存过期时间时,给每个缓存增加一个随机值,避免同时过期导致雪崩。

@Service
public class CacheService {@Autowiredprivate RedisTemplate<String, Object> redisTemplate;public void setCacheWithRandomTTL(String key, Object value) {// 设置基础的缓存时间,比如1小时long baseTime = 60 * 60;// 添加一个随机的过期时间,避免同一时间大量缓存同时失效long randomTime = new Random().nextInt(300);  // 随机增加0~300秒redisTemplate.opsForValue().set(key, value, baseTime + randomTime, TimeUnit.SECONDS);}
}
3. 使用互斥锁防止缓存击穿

缓存击穿是指某个热点数据的缓存失效后,瞬间大量请求直接打到数据库,导致数据库压力骤增。可以使用分布式锁,确保在缓存失效时,只有一个线程能请求数据库,其他线程等待缓存重新生成。

@Service
public class CacheWithLockService {@Autowiredprivate RedisTemplate<String, Object> redisTemplate;// 获取数据时,使用分布式锁public Object getCacheWithLock(String key) {Object value = redisTemplate.opsForValue().get(key);if (value == null) {// 使用 Redis 的 setIfAbsent (NX) 命令实现分布式锁String lockKey = key + "_lock";Boolean lockAcquired = redisTemplate.opsForValue().setIfAbsent(lockKey, "LOCK", 5, TimeUnit.SECONDS);if (lockAcquired != null && lockAcquired) {try {// 缓存失效且获得锁,查询数据库并更新缓存value = loadDataFromDB();redisTemplate.opsForValue().set(key, value, 60, TimeUnit.SECONDS);} finally {// 释放锁redisTemplate.delete(lockKey);}} else {// 未获得锁,等待缓存更新try {Thread.sleep(100);} catch (InterruptedException e) {e.printStackTrace();}return redisTemplate.opsForValue().get(key);  // 再次尝试获取缓存}}return value;}private Object loadDataFromDB() {// 模拟从数据库加载数据return new Object();  // 返回数据库中的数据}
}
4. 缓存降级

当 Redis 不可用时,系统可以通过降级策略,直接访问数据库或者返回一些默认值。我们可以通过 try-catch 捕获 Redis 异常,来实现降级逻辑。

@Service
public class CacheDegradeService {@Autowiredprivate RedisTemplate<String, Object> redisTemplate;public Object getData(String key) {try {Object value = redisTemplate.opsForValue().get(key);if (value != null) {return value;}} catch (Exception e) {// Redis 发生异常时,执行降级逻辑System.out.println("Redis不可用,执行降级策略");}// Redis不可用或者缓存失效,直接从数据库获取数据return loadDataFromDB();}private Object loadDataFromDB() {// 模拟从数据库加载数据return new Object();  // 返回数据库中的数据}
}
5. 数据持久化与集群

Redis 提供了 RDB 和 AOF 的持久化机制来保证数据不会因为 Redis 崩溃而丢失。同时,通过 Redis 的集群模式,我们可以将数据分布在多个节点上,提升系统的可靠性和可用性。

# 开启 AOF 持久化
appendonly yes
# 每秒同步一次 AOF 文件
appendfsync everysec# Redis Cluster 配置,启动多个节点,配置集群
cluster-enabled yes
cluster-config-file nodes-6379.conf
cluster-node-timeout 5000

四、总结

  1. Redis 雪崩 是在缓存失效后,大量请求直接打到数据库,导致数据库压力骤增甚至崩溃的问题。在高并发场景下,Redis 雪崩可能会带来严重后果。

  2. 为了避免 Redis 雪崩,可以采取多种措施,如 缓存预热设置不同过期时间使用互斥锁防止缓存击穿缓存降级限流与熔断机制 等。

  3. 持久化与集群 是提升 Redis 可用性的关键,确保即便在单个节点失效的情况下,服务依然能够正常工作。

通过合理的策略和设计,开发者可以大大降低 Redis 雪崩的风险,保障系统的高可用性和稳定性。

这篇关于java-redis-雪崩的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147717

相关文章

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

java脚本使用不同版本jdk的说明介绍

《java脚本使用不同版本jdk的说明介绍》本文介绍了在Java中执行JavaScript脚本的几种方式,包括使用ScriptEngine、Nashorn和GraalVM,ScriptEngine适用... 目录Java脚本使用不同版本jdk的说明1.使用ScriptEngine执行javascript2.

Spring MVC如何设置响应

《SpringMVC如何设置响应》本文介绍了如何在Spring框架中设置响应,并通过不同的注解返回静态页面、HTML片段和JSON数据,此外,还讲解了如何设置响应的状态码和Header... 目录1. 返回静态页面1.1 Spring 默认扫描路径1.2 @RestController2. 返回 html2

Spring常见错误之Web嵌套对象校验失效解决办法

《Spring常见错误之Web嵌套对象校验失效解决办法》:本文主要介绍Spring常见错误之Web嵌套对象校验失效解决的相关资料,通过在Phone对象上添加@Valid注解,问题得以解决,需要的朋... 目录问题复现案例解析问题修正总结  问题复现当开发一个学籍管理系统时,我们会提供了一个 API 接口去

Java操作ElasticSearch的实例详解

《Java操作ElasticSearch的实例详解》Elasticsearch是一个分布式的搜索和分析引擎,广泛用于全文搜索、日志分析等场景,本文将介绍如何在Java应用中使用Elastics... 目录简介环境准备1. 安装 Elasticsearch2. 添加依赖连接 Elasticsearch1. 创

Spring核心思想之浅谈IoC容器与依赖倒置(DI)

《Spring核心思想之浅谈IoC容器与依赖倒置(DI)》文章介绍了Spring的IoC和DI机制,以及MyBatis的动态代理,通过注解和反射,Spring能够自动管理对象的创建和依赖注入,而MyB... 目录一、控制反转 IoC二、依赖倒置 DI1. 详细概念2. Spring 中 DI 的实现原理三、

SpringBoot 整合 Grizzly的过程

《SpringBoot整合Grizzly的过程》Grizzly是一个高性能的、异步的、非阻塞的HTTP服务器框架,它可以与SpringBoot一起提供比传统的Tomcat或Jet... 目录为什么选择 Grizzly?Spring Boot + Grizzly 整合的优势添加依赖自定义 Grizzly 作为