设计模式大全和详解,含Python代码例子

2024-09-08 08:20

本文主要是介绍设计模式大全和详解,含Python代码例子,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

若有不理解,可以问一下这几个免费的AI网站

  • https://ai-to.cn/chat
  • http://m6z.cn/6arKdN
  • http://m6z.cn/6b1quh
  • http://m6z.cn/6wVAQG
  • http://m6z.cn/63vlPw

下面是设计模式的简要介绍和 Python 代码示例,涵盖主要的创建型、结构型和行为型模式。

一、创建型模式

1. 单例模式 (Singleton)

确保某个类只有一个实例,并提供全局访问点。

class Singleton:_instance = Nonedef __new__(cls):if cls._instance is None:cls._instance = super(Singleton, cls).__new__(cls)return cls._instances1 = Singleton()
s2 = Singleton()
print(s1 is s2)  # 输出: True
2. 工厂方法模式 (Factory Method)

定义一个接口用于创建对象,让子类决定实例化哪一个类。

class Animal:def speak(self):passclass Dog(Animal):def speak(self):return "Woof!"class Cat(Animal):def speak(self):return "Meow!"class AnimalFactory:def create_animal(self, animal_type):if animal_type == "dog":return Dog()elif animal_type == "cat":return Cat()factory = AnimalFactory()
dog = factory.create_animal("dog")
print(dog.speak())  # 输出: Woof!
3. 抽象工厂模式 (Abstract Factory)

提供一个接口用于创建一系列相关或依赖的对象。

class AbstractFactory:def create_animal(self):passdef create_vehicle(self):passclass DogFactory(AbstractFactory):def create_animal(self):return Dog()def create_vehicle(self):return DogSled()class DogSled:def ride(self):return "Riding a dog sled!"factory = DogFactory()
dog = factory.create_animal()
sled = factory.create_vehicle()
print(dog.speak())  # 输出: Woof!
print(sled.ride())  # 输出: Riding a dog sled!
4. 建造者模式 (Builder)

将一个复杂对象的构建与它的表示分离。

class Car:def __init__(self):self.model = Noneself.color = Noneclass CarBuilder:def __init__(self):self.car = Car()def set_model(self, model):self.car.model = modelreturn selfdef set_color(self, color):self.car.color = colorreturn selfdef build(self):return self.carbuilder = CarBuilder()
car = builder.set_model("Toyota").set_color("Red").build()
print(car.model, car.color)  # 输出: Toyota Red
5. 原型模式 (Prototype)

通过复制现有的实例来创建新的实例。

import copyclass Prototype:def __init__(self):self._objects = {}def register_object(self, name, obj):self._objects[name] = objdef unregister_object(self, name):del self._objects[name]def clone(self, name, **attrs):obj = copy.deepcopy(self._objects.get(name))obj.__dict__.update(attrs)return objclass Car:def __init__(self):self.model = "Base Model"prototype = Prototype()
prototype.register_object("car1", Car())car_clone = prototype.clone("car1", model="Clone Model")
print(car_clone.model)  # 输出: Clone Model

二、结构型模式

1. 适配器模式 (Adapter)

将一个类的接口转换成客户端所期望的另一种接口。

class EuropeanPlug:def connect(self):return "Connected to European plug."class USAToEuropeanAdapter:def __init__(self, usa_plug):self.usa_plug = usa_plugdef connect(self):return self.usa_plug.connect() + " (adapted to European plug)"class USAPlug:def connect(self):return "Connected to USA plug."usa_plug = USAPlug()
adapter = USAToEuropeanAdapter(usa_plug)
print(adapter.connect())  # 输出: Connected to USA plug. (adapted to European plug)
2. 桥接模式 (Bridge)

将抽象部分与实现部分分离,使它们可以独立变化。

class Color:def fill(self):passclass Red(Color):def fill(self):return "Filled with red color."class Green(Color):def fill(self):return "Filled with green color."class Shape:def __init__(self, color):self.color = colorclass Circle(Shape):def draw(self):return f"Drawing a circle. {self.color.fill()}"circle = Circle(Red())
print(circle.draw())  # 输出: Drawing a circle. Filled with red color.
3. 组合模式 (Composite)

将对象组合成树形结构以表示“部分-整体”的层次结构。

class Component:def operation(self):passclass Leaf(Component):def operation(self):return "Leaf"class Composite(Component):def __init__(self):self.children = []def add(self, component):self.children.append(component)def operation(self):results = [child.operation() for child in self.children]return "Composite: " + ", ".join(results)composite = Composite()
composite.add(Leaf())
composite.add(Leaf())
print(composite.operation())  # 输出: Composite: Leaf, Leaf
4. 装饰模式 (Decorator)

动态地给一个对象添加一些额外的职责。

class Coffee:def cost(self):return 5class MilkDecorator:def __init__(self, coffee):self.coffee = coffeedef cost(self):return self.coffee.cost() + 1coffee = Coffee()
print(coffee.cost())  # 输出: 5coffee_with_milk = MilkDecorator(coffee)
print(coffee_with_milk.cost())  # 输出: 6
5. 外观模式 (Facade)

为一个复杂子系统提供一个简单的接口。

class CPU:def freeze(self):print("CPU freezing.")class Memory:def load(self):print("Memory loading.")class HardDrive:def read(self):print("Hard drive reading.")class Computer:def __init__(self):self.cpu = CPU()self.memory = Memory()self.hard_drive = HardDrive()def start(self):self.cpu.freeze()self.memory.load()self.hard_drive.read()print("Computer started.")computer = Computer()
computer.start()  # 输出: CPU freezing. Memory loading. Hard drive reading. Computer started.
6. 享元模式 (Flyweight)

通过共享大量细粒度的对象来减少内存消耗。

class Flyweight:def __init__(self, intrinsic_state):self.intrinsic_state = intrinsic_stateclass FlyweightFactory:def __init__(self):self.flyweights = {}def get_flyweight(self, key):if key not in self.flyweights:self.flyweights[key] = Flyweight(key)return self.flyweights[key]factory = FlyweightFactory()
flyweight1 = factory.get_flyweight("shared")
flyweight2 = factory.get_flyweight("shared")
print(flyweight1 is flyweight2)  # 输出: True
7. 代理模式 (Proxy)

为其他对象提供一种代理以控制对这个对象的访问。

class RealSubject:def request(self):return "Real subject request."class Proxy:def __init__(self, real_subject):self.real_subject = real_subjectdef request(self):print("Proxy: Pre-processing.")return self.real_subject.request()real_subject = RealSubject()
proxy = Proxy(real_subject)
print(proxy.request())  # 输出: Proxy: Pre-processing. Real subject request.

三、行为型模式

1. 链式责任模式 (Chain of Responsibility)

使多个对象都有机会处理请求。

class Handler:def set_next(self, handler):self.next_handler = handlerreturn handlerdef handle(self, request):if hasattr(self, 'next_handler'):return self.next_handler.handle(request)return Noneclass ConcreteHandlerA(Handler):def handle(self, request):if request == "A":return "Handler A processed the request."return super().handle(request)class ConcreteHandlerB(Handler):def handle(self, request):if request == "B":return "Handler B processed the request."return super().handle(request)handler_a = ConcreteHandlerA()
handler_b = ConcreteHandlerB()
handler_a.set_next(handler_b)print(handler_a.handle("A"))  # 输出: Handler A processed the request.
print(handler_a.handle("B"))  # 输出: Handler B processed the request.
2. 命令模式 (Command)

将请求封装为一个对象。

class Command:def execute(self):passclass Light:def turn_on(self):return "Light is ON"def turn_off(self):return "Light is OFF"class LightOnCommand(Command):def __init__(self, light):self.light = lightdef execute(self):return self.light.turn_on()class LightOffCommand(Command):def __init__(self, light):self.light = lightdef execute(self):return self.light.turn_off()light = Light()
on_command = LightOnCommand(light)
off_command = LightOffCommand(light)print(on_command.execute())  # 输出: Light is ON
print(off_command.execute())  # 输出: Light is OFF
3. 解释器模式 (Interpreter)

定义一个语言的文法,并提供解释器。

class Expression:def interpret(self):passclass TerminalExpression(Expression):def __init__(self, data):self.data = datadef interpret(self):return f"Interpreting {self.data}"class OrExpression(Expression):def __init__(self, expr1, expr2):self.expr1 = expr1self.expr2 = expr2def interpret(self):return f"{self.expr1.interpret()} or {self.expr2.interpret()}"expr1 = TerminalExpression("A")
expr2 = TerminalExpression("B")
or_expr = OrExpression(expr1, expr2)
print(or_expr.interpret())  # 输出: Interpreting A or Interpreting B
4. 迭代器模式 (Iterator)

提供一种方法顺序访问一个集合对象中的各个元素。

class Iterator:def __init__(self, collection):self._collection = collectionself._index = 0def __next__(self):if self._index < len(self._collection):result = self._collection[self._index]self._index += 1return resultraise StopIterationclass Collection:def __init__(self):self.items = []def add(self, item):self.items.append(item)def __iter__(self):return Iterator(self.items)collection = Collection()
collection.add("Item 1")
collection.add("Item 2")for item in collection:print(item)  # 输出: Item 1 \n Item 2
5. 中介者模式 (Mediator)

定义一个对象来封装一系列的对象交互。

class Mediator:def notify(self, sender, event):passclass ConcreteMediator(Mediator):def __init__(self, component1, component2):self.component1 = component1self.component2 = component2self.component1.mediator = selfself.component2.mediator = selfdef notify(self, sender, event):if event == "A":print("Mediator reacts on A and triggers following operations:")self.component2.do_c()class Component1:def __init__(self):self.mediator = Nonedef do_a(self):print("Component 1 does A.")self.mediator.notify(self, "A")class Component2:def __init__(self):self.mediator = Nonedef do_c(self):print("Component 2 does C.")component1 = Component1()
component2 = Component2()
mediator = ConcreteMediator(component1, component2)component1.do_a()  # 输出: Component 1 does A. Mediator reacts on A and triggers following operations: Component 2 does C.
6. 备忘录模式 (Memento)

在不违反封装性的前提下,捕获一个对象的内部状态。

class Memento:def __init__(self, state):self.state = stateclass Originator:def __init__(self):self.state = Nonedef create_memento(self):return Memento(self.state)def restore(self, memento):self.state = memento.stateoriginator = Originator()
originator.state = "State 1"
memento = originator.create_memento()originator.state = "State 2"
originator.restore(memento)
print(originator.state)  # 输出: State 1
7. 发布-订阅模式 (Observer)

定义了一种一对多的依赖关系,让多个观察者同时监听。

class Subject:def __init__(self):self._observers = []def attach(self, observer):self._observers.append(observer)def notify(self, message):for observer in self._observers:observer.update(message)class Observer:def update(self, message):passclass ConcreteObserver(Observer):def update(self, message):print(f"Observer received message: {message}")subject = Subject()
observer1 = ConcreteObserver()
subject.attach(observer1)subject.notify("Hello Observers!")  # 输出: Observer received message: Hello Observers!
8. 状态模式 (State)

允许对象在内部状态变化时改变它的行为。

class State:def handle(self):passclass ConcreteStateA(State):def handle(self):return "State A handling."class ConcreteStateB(State):def handle(self):return "State B handling."class Context:def __init__(self):self.state = ConcreteStateA()def request(self):print(self.state.handle())self.state = ConcreteStateB() if isinstance(self.state, ConcreteStateA) else ConcreteStateA()context = Context()
context.request()  # 输出: State A handling.
context.request()  # 输出: State B handling.
9. 策略模式 (Strategy)

定义一系列算法,将每一个算法封装起来,并使它们可以互换。

class Strategy:def execute(self, a, b):passclass AddStrategy(Strategy):def execute(self, a, b):return a + bclass SubtractStrategy(Strategy):def execute(self, a, b):return a - bclass Context:def __init__(self, strategy):self.strategy = strategydef execute_strategy(self, a, b):return self.strategy.execute(a, b)context = Context(AddStrategy())
print(context.execute_strategy(5, 3))  # 输出: 8context.strategy = SubtractStrategy()
print(context.execute_strategy(5, 3))  # 输出: 2
10. 访问者模式 (Visitor)

表示一个作用于某种对象结构中的各元素的操作。

class Visitor:def visit(self, element):passclass ConcreteVisitor(Visitor):def visit(self, element):return f"Visited {element.name}"class Element:def __init__(self, name):self.name = namedef accept(self, visitor):return visitor.visit(self)elements = [Element("Element 1"), Element("Element 2")]
visitor = ConcreteVisitor()for element in elements:print(element.accept(visitor))  # 输出: Visited Element 1 \n Visited Element 2

总结

设计模式是软件开发中常用的解决方案,理解这些模式及其实现能够帮助开发者更高效地解决问题。Python 提供了灵活的语法,使得实现这些模式变得相对简单。选择合适的设计模式和场景能够提高代码的可维护性和可读性。

这篇关于设计模式大全和详解,含Python代码例子的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147600

相关文章

Debezium 与 Apache Kafka 的集成方式步骤详解

《Debezium与ApacheKafka的集成方式步骤详解》本文详细介绍了如何将Debezium与ApacheKafka集成,包括集成概述、步骤、注意事项等,通过KafkaConnect,D... 目录一、集成概述二、集成步骤1. 准备 Kafka 环境2. 配置 Kafka Connect3. 安装 D

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

Spring Cloud LoadBalancer 负载均衡详解

《SpringCloudLoadBalancer负载均衡详解》本文介绍了如何在SpringCloud中使用SpringCloudLoadBalancer实现客户端负载均衡,并详细讲解了轮询策略和... 目录1. 在 idea 上运行多个服务2. 问题引入3. 负载均衡4. Spring Cloud Load

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景