本文主要是介绍设计模式大全和详解,含Python代码例子,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
若有不理解,可以问一下这几个免费的AI网站
- https://ai-to.cn/chat
- http://m6z.cn/6arKdN
- http://m6z.cn/6b1quh
- http://m6z.cn/6wVAQG
- http://m6z.cn/63vlPw
下面是设计模式的简要介绍和 Python 代码示例,涵盖主要的创建型、结构型和行为型模式。
一、创建型模式
1. 单例模式 (Singleton)
确保某个类只有一个实例,并提供全局访问点。
class Singleton:_instance = Nonedef __new__(cls):if cls._instance is None:cls._instance = super(Singleton, cls).__new__(cls)return cls._instances1 = Singleton()
s2 = Singleton()
print(s1 is s2) # 输出: True
2. 工厂方法模式 (Factory Method)
定义一个接口用于创建对象,让子类决定实例化哪一个类。
class Animal:def speak(self):passclass Dog(Animal):def speak(self):return "Woof!"class Cat(Animal):def speak(self):return "Meow!"class AnimalFactory:def create_animal(self, animal_type):if animal_type == "dog":return Dog()elif animal_type == "cat":return Cat()factory = AnimalFactory()
dog = factory.create_animal("dog")
print(dog.speak()) # 输出: Woof!
3. 抽象工厂模式 (Abstract Factory)
提供一个接口用于创建一系列相关或依赖的对象。
class AbstractFactory:def create_animal(self):passdef create_vehicle(self):passclass DogFactory(AbstractFactory):def create_animal(self):return Dog()def create_vehicle(self):return DogSled()class DogSled:def ride(self):return "Riding a dog sled!"factory = DogFactory()
dog = factory.create_animal()
sled = factory.create_vehicle()
print(dog.speak()) # 输出: Woof!
print(sled.ride()) # 输出: Riding a dog sled!
4. 建造者模式 (Builder)
将一个复杂对象的构建与它的表示分离。
class Car:def __init__(self):self.model = Noneself.color = Noneclass CarBuilder:def __init__(self):self.car = Car()def set_model(self, model):self.car.model = modelreturn selfdef set_color(self, color):self.car.color = colorreturn selfdef build(self):return self.carbuilder = CarBuilder()
car = builder.set_model("Toyota").set_color("Red").build()
print(car.model, car.color) # 输出: Toyota Red
5. 原型模式 (Prototype)
通过复制现有的实例来创建新的实例。
import copyclass Prototype:def __init__(self):self._objects = {}def register_object(self, name, obj):self._objects[name] = objdef unregister_object(self, name):del self._objects[name]def clone(self, name, **attrs):obj = copy.deepcopy(self._objects.get(name))obj.__dict__.update(attrs)return objclass Car:def __init__(self):self.model = "Base Model"prototype = Prototype()
prototype.register_object("car1", Car())car_clone = prototype.clone("car1", model="Clone Model")
print(car_clone.model) # 输出: Clone Model
二、结构型模式
1. 适配器模式 (Adapter)
将一个类的接口转换成客户端所期望的另一种接口。
class EuropeanPlug:def connect(self):return "Connected to European plug."class USAToEuropeanAdapter:def __init__(self, usa_plug):self.usa_plug = usa_plugdef connect(self):return self.usa_plug.connect() + " (adapted to European plug)"class USAPlug:def connect(self):return "Connected to USA plug."usa_plug = USAPlug()
adapter = USAToEuropeanAdapter(usa_plug)
print(adapter.connect()) # 输出: Connected to USA plug. (adapted to European plug)
2. 桥接模式 (Bridge)
将抽象部分与实现部分分离,使它们可以独立变化。
class Color:def fill(self):passclass Red(Color):def fill(self):return "Filled with red color."class Green(Color):def fill(self):return "Filled with green color."class Shape:def __init__(self, color):self.color = colorclass Circle(Shape):def draw(self):return f"Drawing a circle. {self.color.fill()}"circle = Circle(Red())
print(circle.draw()) # 输出: Drawing a circle. Filled with red color.
3. 组合模式 (Composite)
将对象组合成树形结构以表示“部分-整体”的层次结构。
class Component:def operation(self):passclass Leaf(Component):def operation(self):return "Leaf"class Composite(Component):def __init__(self):self.children = []def add(self, component):self.children.append(component)def operation(self):results = [child.operation() for child in self.children]return "Composite: " + ", ".join(results)composite = Composite()
composite.add(Leaf())
composite.add(Leaf())
print(composite.operation()) # 输出: Composite: Leaf, Leaf
4. 装饰模式 (Decorator)
动态地给一个对象添加一些额外的职责。
class Coffee:def cost(self):return 5class MilkDecorator:def __init__(self, coffee):self.coffee = coffeedef cost(self):return self.coffee.cost() + 1coffee = Coffee()
print(coffee.cost()) # 输出: 5coffee_with_milk = MilkDecorator(coffee)
print(coffee_with_milk.cost()) # 输出: 6
5. 外观模式 (Facade)
为一个复杂子系统提供一个简单的接口。
class CPU:def freeze(self):print("CPU freezing.")class Memory:def load(self):print("Memory loading.")class HardDrive:def read(self):print("Hard drive reading.")class Computer:def __init__(self):self.cpu = CPU()self.memory = Memory()self.hard_drive = HardDrive()def start(self):self.cpu.freeze()self.memory.load()self.hard_drive.read()print("Computer started.")computer = Computer()
computer.start() # 输出: CPU freezing. Memory loading. Hard drive reading. Computer started.
6. 享元模式 (Flyweight)
通过共享大量细粒度的对象来减少内存消耗。
class Flyweight:def __init__(self, intrinsic_state):self.intrinsic_state = intrinsic_stateclass FlyweightFactory:def __init__(self):self.flyweights = {}def get_flyweight(self, key):if key not in self.flyweights:self.flyweights[key] = Flyweight(key)return self.flyweights[key]factory = FlyweightFactory()
flyweight1 = factory.get_flyweight("shared")
flyweight2 = factory.get_flyweight("shared")
print(flyweight1 is flyweight2) # 输出: True
7. 代理模式 (Proxy)
为其他对象提供一种代理以控制对这个对象的访问。
class RealSubject:def request(self):return "Real subject request."class Proxy:def __init__(self, real_subject):self.real_subject = real_subjectdef request(self):print("Proxy: Pre-processing.")return self.real_subject.request()real_subject = RealSubject()
proxy = Proxy(real_subject)
print(proxy.request()) # 输出: Proxy: Pre-processing. Real subject request.
三、行为型模式
1. 链式责任模式 (Chain of Responsibility)
使多个对象都有机会处理请求。
class Handler:def set_next(self, handler):self.next_handler = handlerreturn handlerdef handle(self, request):if hasattr(self, 'next_handler'):return self.next_handler.handle(request)return Noneclass ConcreteHandlerA(Handler):def handle(self, request):if request == "A":return "Handler A processed the request."return super().handle(request)class ConcreteHandlerB(Handler):def handle(self, request):if request == "B":return "Handler B processed the request."return super().handle(request)handler_a = ConcreteHandlerA()
handler_b = ConcreteHandlerB()
handler_a.set_next(handler_b)print(handler_a.handle("A")) # 输出: Handler A processed the request.
print(handler_a.handle("B")) # 输出: Handler B processed the request.
2. 命令模式 (Command)
将请求封装为一个对象。
class Command:def execute(self):passclass Light:def turn_on(self):return "Light is ON"def turn_off(self):return "Light is OFF"class LightOnCommand(Command):def __init__(self, light):self.light = lightdef execute(self):return self.light.turn_on()class LightOffCommand(Command):def __init__(self, light):self.light = lightdef execute(self):return self.light.turn_off()light = Light()
on_command = LightOnCommand(light)
off_command = LightOffCommand(light)print(on_command.execute()) # 输出: Light is ON
print(off_command.execute()) # 输出: Light is OFF
3. 解释器模式 (Interpreter)
定义一个语言的文法,并提供解释器。
class Expression:def interpret(self):passclass TerminalExpression(Expression):def __init__(self, data):self.data = datadef interpret(self):return f"Interpreting {self.data}"class OrExpression(Expression):def __init__(self, expr1, expr2):self.expr1 = expr1self.expr2 = expr2def interpret(self):return f"{self.expr1.interpret()} or {self.expr2.interpret()}"expr1 = TerminalExpression("A")
expr2 = TerminalExpression("B")
or_expr = OrExpression(expr1, expr2)
print(or_expr.interpret()) # 输出: Interpreting A or Interpreting B
4. 迭代器模式 (Iterator)
提供一种方法顺序访问一个集合对象中的各个元素。
class Iterator:def __init__(self, collection):self._collection = collectionself._index = 0def __next__(self):if self._index < len(self._collection):result = self._collection[self._index]self._index += 1return resultraise StopIterationclass Collection:def __init__(self):self.items = []def add(self, item):self.items.append(item)def __iter__(self):return Iterator(self.items)collection = Collection()
collection.add("Item 1")
collection.add("Item 2")for item in collection:print(item) # 输出: Item 1 \n Item 2
5. 中介者模式 (Mediator)
定义一个对象来封装一系列的对象交互。
class Mediator:def notify(self, sender, event):passclass ConcreteMediator(Mediator):def __init__(self, component1, component2):self.component1 = component1self.component2 = component2self.component1.mediator = selfself.component2.mediator = selfdef notify(self, sender, event):if event == "A":print("Mediator reacts on A and triggers following operations:")self.component2.do_c()class Component1:def __init__(self):self.mediator = Nonedef do_a(self):print("Component 1 does A.")self.mediator.notify(self, "A")class Component2:def __init__(self):self.mediator = Nonedef do_c(self):print("Component 2 does C.")component1 = Component1()
component2 = Component2()
mediator = ConcreteMediator(component1, component2)component1.do_a() # 输出: Component 1 does A. Mediator reacts on A and triggers following operations: Component 2 does C.
6. 备忘录模式 (Memento)
在不违反封装性的前提下,捕获一个对象的内部状态。
class Memento:def __init__(self, state):self.state = stateclass Originator:def __init__(self):self.state = Nonedef create_memento(self):return Memento(self.state)def restore(self, memento):self.state = memento.stateoriginator = Originator()
originator.state = "State 1"
memento = originator.create_memento()originator.state = "State 2"
originator.restore(memento)
print(originator.state) # 输出: State 1
7. 发布-订阅模式 (Observer)
定义了一种一对多的依赖关系,让多个观察者同时监听。
class Subject:def __init__(self):self._observers = []def attach(self, observer):self._observers.append(observer)def notify(self, message):for observer in self._observers:observer.update(message)class Observer:def update(self, message):passclass ConcreteObserver(Observer):def update(self, message):print(f"Observer received message: {message}")subject = Subject()
observer1 = ConcreteObserver()
subject.attach(observer1)subject.notify("Hello Observers!") # 输出: Observer received message: Hello Observers!
8. 状态模式 (State)
允许对象在内部状态变化时改变它的行为。
class State:def handle(self):passclass ConcreteStateA(State):def handle(self):return "State A handling."class ConcreteStateB(State):def handle(self):return "State B handling."class Context:def __init__(self):self.state = ConcreteStateA()def request(self):print(self.state.handle())self.state = ConcreteStateB() if isinstance(self.state, ConcreteStateA) else ConcreteStateA()context = Context()
context.request() # 输出: State A handling.
context.request() # 输出: State B handling.
9. 策略模式 (Strategy)
定义一系列算法,将每一个算法封装起来,并使它们可以互换。
class Strategy:def execute(self, a, b):passclass AddStrategy(Strategy):def execute(self, a, b):return a + bclass SubtractStrategy(Strategy):def execute(self, a, b):return a - bclass Context:def __init__(self, strategy):self.strategy = strategydef execute_strategy(self, a, b):return self.strategy.execute(a, b)context = Context(AddStrategy())
print(context.execute_strategy(5, 3)) # 输出: 8context.strategy = SubtractStrategy()
print(context.execute_strategy(5, 3)) # 输出: 2
10. 访问者模式 (Visitor)
表示一个作用于某种对象结构中的各元素的操作。
class Visitor:def visit(self, element):passclass ConcreteVisitor(Visitor):def visit(self, element):return f"Visited {element.name}"class Element:def __init__(self, name):self.name = namedef accept(self, visitor):return visitor.visit(self)elements = [Element("Element 1"), Element("Element 2")]
visitor = ConcreteVisitor()for element in elements:print(element.accept(visitor)) # 输出: Visited Element 1 \n Visited Element 2
总结
设计模式是软件开发中常用的解决方案,理解这些模式及其实现能够帮助开发者更高效地解决问题。Python 提供了灵活的语法,使得实现这些模式变得相对简单。选择合适的设计模式和场景能够提高代码的可维护性和可读性。
这篇关于设计模式大全和详解,含Python代码例子的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!