使用Node-API进行异步任务开发

2024-09-08 06:20

本文主要是介绍使用Node-API进行异步任务开发,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、Node-API异步任务机制概述

        Node-API异步任务开发主要用于执行耗时操作的场景中使用,以避免阻塞主线程,确保应用程序的性能和响应效率。

        1、应用场景:

  • 文件操作:读取大型文件或执行复杂的文件操作时,可以使用异步工作项来避免阻塞主线程。
  • 网络请求:当需要进行网络请求并等待响应时,可以使用异步工作项来避免阻塞主线程,从而提高应用程序的响应性能。
  • 数据库操作:当需要执行复杂的数据库查询或写入操作时,可以使用异步工作项来避免阻塞主线程,从而提高应用程序的并发性能。
  • 图形处理:当需要对大型图像进行处理或执行复杂的图像算法时,可以使用异步工作项来避免阻塞主线程,从而提高应用程序的实时性能。

        2、 异步方式与同步方式的区别

        异步方式与同步方式的区别在于,同步方式中所有代码的处理都在ArkTS主线程中完成,而异步方式中的所有代码在多线程中完成。Node-API主要是通过创建一个异步工作项来实现异步任务开发。

        3、异步任务开发总体步骤

  • 在Native接口函数中,创建一个异步工作项,并置入libuv调度队列中,然后立即返回一个临时结果给ArkTS调用者;
  • 通过libuv线程池创建并调度work子线程完成异步业务逻辑的执行;
  • 通过Callback回调或者Promise延时对象返回真正的处理结果,并用于应用侧UI刷新。

        4、异步任务流程原理 

        异步工作项的底层机制是基于libuv异步库来实现的,具体流程原理如下:

        

        依赖Node-API提供的napi_create_async_work接口创建异步工作项:

NAPI_EXTERN napi_status napi_create_async_work(napi_env env,napi_value async_resource,napi_value async_resource_name,napi_async_execute_callback execute,napi_async_complete_callback complete,void* data,napi_async_work* result);
参数说明:
[in] env:传入接口调用者的环境,包含方舟引擎等。由框架提供,默认情况下直接传入即可。
[in] async_resource:可选项,关联async_hooks。
[in] async_resource_name:异步资源标识符,主要用于async_hooks API暴露断言诊断信息。
[in] execute:执行业务逻辑计算函数,由libuv线程池调度执行。在该函数中执行IO、CPU密集型任务,不阻塞主线程。
[in] complete:execute回调函数执行完成或取消后,触发执行该函数。此函数在EventLoop子线程中执行。
[in] data:用户提供的上下文数据,用于传递数据。
[out] result:napi_async_work*指针,用于返回当前此处函数调用创建的异步工作项。 返回值:返回napi_ok表示转换成功,其他值失败。

        5、Execute回调

  • execute函数用于执行工作项的业务逻辑,异步工作项被调度后,该函数从上下文数据中获取输入数据,在work子线程中完成业务逻辑计算(不阻塞主线程)并将结果写入上下文数据。
  • 因为execute函数不在ArkTS线程中,所以不允许execute函数调用napi的接口。业务逻辑的返回值可以返回到complete回调中处理。

        6、Complete回调

  • 业务逻辑处理execute函数执行完成或被取消后,通过事件通知EventLoop执行complete函数,complete函数从上下文数据中获取结果,转换为napi_value类型,调用ArkTS回调函数或通过Promise resolve()返回结果。
  • 该函数运行在ArkTS主线程下,因此可以调用napi的接口,将execute中的返回值封装成ArkTS对象返回。

        7、两种异步模型 

        Node-API异步接口实现支持Callback方式和Promise方式,具体使用哪种方式由应用开发者决定,通过是否传递callback函数进行区分。

        (1)Callback异步模型

  • 用户在调用Native接口的时候,Native接口将异步执行任务,并临时返回空值给ArkTS应用侧。
  • 异步任务执行结果以参数的形式提供给用户注册的ArkTS回调函数,并通过napi_call_function将ArkTS回调函数进行调用执行以反馈结果到ArkTS应用侧。

        (2)Promise异步模型

  • 用户在调用Native接口的时候,Native接口将异步执行任务,并返回一个Promise对象给ArkTS应用侧。
  • Promise对象提供了API使得异步执行可以按照同步的流程表示出来,避免了层层嵌套的回调引用。
  • 异步任务执行结果以参数的形式提供给与ArkTS应用侧Promise对象关联的deferred对象,并通过napi_resolve_deferred将计算结果反馈到ArkTS应用侧。

二、异步任务开发时序交互图 

        1、Callback异步开发时序交互

        

        2、Promise异步开发时序交互 

        

三、异步任务开发步骤(Callback简介) 

        

        

        

        

        

四、异步任务开发步骤(实例) 

        1、Callback异步开发步骤

        (1)ArkTS应用侧开发

//Index.ets文件import testNapi from 'libentry.so';
import Constants from '../../common/constants/CommonConstants';@Entry
@Component
struct Index {@State imagePath: string = Constants.INIT_IMAGE_PATH;imageName: string = '';build() {Column() {...// button list, prompting the user to click the button to select the target image.Column() {...// multi-threads callback async buttonButton($r('app.string.async_callback_button_title')).width(Constants.FULL_PARENT).margin($r('app.float.button_common_margin')).onClick(() => {this.imageName = Constants.CALLBACK_BUTTON_IMAGE;testNapi.getImagePathAsyncCallBack(this.imageName, (result: string) => {this.imagePath = Constants.IMAGE_ROOT_PATH + result;});})...}...}...}
}

        (2)Native侧开发

        导出Native接口:将Native接口导出到ArkTS侧,用于支撑ArkTS对象调用和模块编译构建。

// index.d.ts文件
export const getImagePathAsyncCallBack: (imageName: string, callBack: (result: string) => void) => void;

        execute回调:定义异步工作项的第一个回调函数,该函数在work子线程中执行,处理具体的业务逻辑。

// MultiThreads.cpp文件static void ExecuteFunc([[maybe_unused]] napi_env env, void *data) {// create producer threadthread producer(ProductElement, data);// the producer and consumer threads must be synchronized// otherwise, the complete operation is triggered to communicate with the ArkTS after the executeFunc is complete// the result is unpredictableproducer.join();// create consumer threadthread consumer(ConsumeElement, data);consumer.join();
}

        complete回调:定义异步工作项的第二个回调函数,该函数在ArkTS主线程中执行,将结果传递给ArkTS侧。

// MultiThreads.cpp文件static void CompleteFuncCallBack(napi_env env, [[maybe_unused]] napi_status status, void *data) {// parse context dataContextData *contextData = static_cast<ContextData *>(data);napi_value callBack = nullptr;napi_status operStatus = napi_get_reference_value(env, contextData->callbackRef, &callBack);if (operStatus != napi_ok) {DeleteContext(env, contextData);return;}// define the undefined variable, which is used in napi_call_function// because no other data is transferred, the variable is defined as undefinednapi_value undefined = nullptr;operStatus = napi_get_undefined(env, &undefined);if (operStatus != napi_ok) {DeleteContext(env, contextData);return;}// convert the calculation result of C++ sub-thread to the napi_value typenapi_value callBackArgs = nullptr;operStatus = napi_create_string_utf8(env, contextData->result.c_str(),contextData->result.length(), &callBackArgs);if (operStatus != napi_ok) {DeleteContext(env, contextData);return;}// call the JS callback and send the async calculation result on the Native to ArkTS applicationnapi_value callBackResult = nullptr;(void)napi_call_function(env, undefined, callBack, 1, &callBackArgs, &callBackResult);// destroy data and release memoryDeleteContext(env, contextData);
}

        Native异步任务开发接口:解析ArkTS应用侧参数,使用napi_create_async_work创建异步工作项,并使用napi_queue_async_work将异步任务加入队列,等待调度执行。

// MultiThreads.cpp文件// callback async interface
static napi_value GetImagePathAsyncCallBack(napi_env env, napi_callback_info info) {size_t paraNum = 2;napi_value paraArray[2] = {nullptr};// parse parametersnapi_status operStatus = napi_get_cb_info(env, info, &paraNum, paraArray, nullptr, nullptr);if (operStatus != napi_ok) {return nullptr;}napi_valuetype paraDataType = napi_undefined;operStatus = napi_typeof(env, paraArray[0], &paraDataType);if ((operStatus != napi_ok) || (paraDataType != napi_string)) {return nullptr;}operStatus = napi_typeof(env, paraArray[1], &paraDataType);if ((operStatus != napi_ok) || (paraDataType != napi_function)) {return nullptr;}// napi_value convert to char *constexpr size_t buffSize = 100;char strBuff[buffSize]{}; // char buffer for imageName stringsize_t strLength = 0;operStatus = napi_get_value_string_utf8(env, paraArray[0], strBuff, buffSize, &strLength);if ((operStatus != napi_ok) || (strLength == 0)) {return nullptr;}// defines context data. the memory will be released in CompleteFuncauto contextData = new ContextData;contextData->args = strBuff;operStatus = napi_create_reference(env, paraArray[1], 1, &contextData->callbackRef);if (operStatus != napi_ok) {DeleteContext(env, contextData);return nullptr;}// async resourcenapi_value asyncName = nullptr;string asyncStr = "async callback";operStatus = napi_create_string_utf8(env, asyncStr.c_str(), asyncStr.length(), &asyncName);if (operStatus != napi_ok) {DeleteContext(env, contextData);return nullptr;}// create async workoperStatus = napi_create_async_work(env, nullptr, asyncName, ExecuteFunc, CompleteFuncCallBack,static_cast<void *>(contextData), &contextData->asyncWork);if (operStatus != napi_ok) {DeleteContext(env, contextData);return nullptr;}// add the async work to the queue and wait for schedulingoperStatus = napi_queue_async_work(env, contextData->asyncWork);if (operStatus != napi_ok) {DeleteContext(env, contextData);}return nullptr;
}

        2、Promise异步开发步骤

        (1)ArkTS应用侧开发

// index.d.ts文件import testNapi from 'libentry.so';
import Constants from '../../common/constants/CommonConstants';@Entry
@Component
struct Index {@State imagePath: string = Constants.INIT_IMAGE_PATH;imageName: string = '';build() {Column() {...// button list, prompting the user to click the button to select the target image.Column() {...// multi-threads promise async buttonButton($r('app.string.async_promise_button_title')).width(Constants.FULL_PARENT).margin($r('app.float.button_common_margin')).onClick(() => {this.imageName = Constants.PROMISE_BUTTON_IMAGE;let promiseObj = testNapi.getImagePathAsyncPromise(this.imageName);promiseObj.then((result: string) => {this.imagePath = Constants.IMAGE_ROOT_PATH + result;})})...}...}...}
}import testNapi from 'libentry.so';
import Constants from '../../common/constants/CommonConstants';@Entry
@Component
struct Index {@State imagePath: string = Constants.INIT_IMAGE_PATH;imageName: string = '';build() {Column() {...// button list, prompting the user to click the button to select the target image.Column() {...// multi-threads promise async buttonButton($r('app.string.async_promise_button_title')).width(Constants.FULL_PARENT).margin($r('app.float.button_common_margin')).onClick(() => {this.imageName = Constants.PROMISE_BUTTON_IMAGE;let promiseObj = testNapi.getImagePathAsyncPromise(this.imageName);promiseObj.then((result: string) => {this.imagePath = Constants.IMAGE_ROOT_PATH + result;})})...}...}...}
}

        (2)Native侧开发

        导出Native接口:将Native接口导出到ArkTS侧,用于支撑ArkTS对象调用和模块编译构建。

// index.d.ts文件
export const getImagePathAsyncPromise: (imageName: string) => Promise<string>;

        execute回调:定义异步工作项的第一个回调函数,该函数在work子线程中执行,处理具体的业务逻辑。

// MultiThreads.cpp文件static void ExecuteFunc([[maybe_unused]] napi_env env, void *data) {// create producer threadthread producer(ProductElement, data);// the producer and consumer threads must be synchronized// otherwise, the complete operation is triggered to communicate with the ArkTS after the executeFunc is complete// the result is unpredictableproducer.join();// create consumer threadthread consumer(ConsumeElement, data);consumer.join();
}

        complete回调:定义异步工作项的第二个回调函数,该函数在ArkTS主线程中执行,将结果传递给ArkTS侧。

// MultiThreads.cpp文件static void CompleteFuncPromise(napi_env env, [[maybe_unused]] napi_status status, void *data) {// parse context dataContextData *contextData = static_cast<ContextData *>(data);// convert the calculation result of C++ sub-thread to the napi_value typenapi_value promiseArgs = nullptr;napi_status operStatus =napi_create_string_utf8(env, contextData->result.c_str(), contextData->result.length(), &promiseArgs);if (operStatus != napi_ok) {DeleteContext(env, contextData);return;}// the deferred and promise object are associated. the result is sent to ArkTS application through this interfaceoperStatus = napi_resolve_deferred(env, contextData->deferred, promiseArgs);if (operStatus != napi_ok) {DeleteContext(env, contextData);return;}// destroy data and release memoryDeleteContext(env, contextData);
}

        Native异步任务开发接口:解析ArkTS应用侧参数,使用napi_create_async_work创建异步工作项,并使用napi_queue_async_work将异步任务加入队列,等待调度执行。

// MultiThreads.cpp文件// promise async interface
static napi_value GetImagePathAsyncPromise(napi_env env, napi_callback_info info) {size_t paraNum = 1;napi_value paraArray[1] = {nullptr};// parse parametersnapi_status operStatus = napi_get_cb_info(env, info, &paraNum, paraArray, nullptr, nullptr);if (operStatus != napi_ok) {return nullptr;}napi_valuetype paraDataType = napi_undefined;operStatus = napi_typeof(env, paraArray[0], &paraDataType);if ((operStatus != napi_ok) || (paraDataType != napi_string)) {return nullptr;}// napi_value convert to char *constexpr size_t buffSize = 100;char strBuff[buffSize]{}; // char buffer for imageName stringsize_t strLength = 0;operStatus = napi_get_value_string_utf8(env, paraArray[0], strBuff, buffSize, &strLength);if ((operStatus != napi_ok) || (strLength == 0)) {return nullptr;}// defines context data. the memory will be released in CompleteFuncauto contextData = new ContextData;contextData->args = strBuff;// async resourcenapi_value asyncName = nullptr;string asyncStr = "async promise";operStatus = napi_create_string_utf8(env, asyncStr.c_str(), asyncStr.length(), &asyncName);if (operStatus != napi_ok) {DeleteContext(env, contextData);return nullptr;}// create async workoperStatus = napi_create_async_work(env, nullptr, asyncName, ExecuteFunc, CompleteFuncPromise,static_cast<void *>(contextData), &contextData->asyncWork);if (operStatus != napi_ok) {DeleteContext(env, contextData);return nullptr;}// add the async work to the queue and wait for schedulingoperStatus = napi_queue_async_work(env, contextData->asyncWork);if (operStatus != napi_ok) {DeleteContext(env, contextData);return nullptr;}// create promise objectnapi_value promiseObj = nullptr;operStatus = napi_create_promise(env, &contextData->deferred, &promiseObj);if (operStatus != napi_ok) {DeleteContext(env, contextData);return nullptr;}return promiseObj;
}

这篇关于使用Node-API进行异步任务开发的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147363

相关文章

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi