环形定时任务 原理

2024-09-08 01:18
文章标签 原理 定时 任务 环形

本文主要是介绍环形定时任务 原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

业务背景

在稍微复杂点业务系统中,不可避免会碰到做定时任务的需求,比如淘宝的交易超时自动关闭订单、超时自动确认收货等等。对于一些定时作业比较多的系统,通常都会搭建专门的调度平台来管理,通过创建定时器来周期性执行任务。如刚才所说的场景,我们可以给订单创建一个专门的任务来处理交易状态,每秒轮询一次订单表,找出那些符合超时条件的订单然后标记状态。这是最简单粗暴的做法,但明显也很low,自己都下不去手写这样的代码,所有必须要找个更好的方案。

回到真实项目中的场景,系统中某个活动上线后要给目标用户发送短信通知,这些通知需要按时间点批量发送。虽然已经基于quartz.net给系统搭建了任务调度平台,但着实不想用上述方案来实现。在网上各种搜索和思考,找到一篇文章让我眼前一亮,稍加分析发现里面的思路完全符合现在的场景,于是决定在自己项目中实现出来。

 

原理分析

 这种方案的核心就是构造一种数据结构,称之为环形队列,但实际上还是一个数组,加上对它的循环遍历,达到一种环状的假象。然后再配合定时器,就可以实现按需延时的效果。上面提到的文章中也介绍了实现思路,这里我采用我的理解再更加详细的解释一下。

我们先为这个数组分配一个固定大小的空间,比如60,每个数组的元素用来存放任务的集合。然后开启一个定时器每隔一秒来扫描这个数组,扫完一圈刚好是一分钟。如果提前设置好任务被扫描的圈数(CycleNum)和在数组中的位置(Slot),在刚好扫到数组的Slot位置时,集合里那些CycleNum为0的任务就是达到触发条件的任务,拉出来做业务操作然后移除掉,其他的把圈数减掉一次,然后留到下次继续扫描,这样就实现了延时的效果。原理如下图所示:

可以看出中间的重点是计算出每个任务所在的位置以及需要循环的圈数。假设当前时间为15:20:08,当前扫描位置是2,我的任务要在15:22:35这个时刻触发,也就是147秒后。那么我需要循环的圈数就是147/60=2圈,需要被扫描的位置就是(147+2)%60=29的地方。计算好任务的坐标后塞到数组中属于它的位置,然后静静等待被消费就好啦。

 

撸码实现

光讲原理不上代码怎么能行呢,根据上面的思路,下面一步步在.net平台下实现出来。

先做一些基础封装。

首先构造任务参数的基类,用来记录任务的位置信息和定义业务回调方法:

复制代码

    public class DelayQueueParam{internal int Slot { get; set; }internal int CycleNum { get; set; }public Action<object> Callback { get; set; }}

复制代码

接下来是核心地方。再构造队列的泛型类,真实类型必须派生自上面的基类,用来扩展一些业务字段方便消费时使用。队列的主要属性有当前位置指针以及数组容器,主要的操作有插入、移除和消费。插入任务时需要传入执行时间,用来计算这个任务的坐标。

复制代码

    public class DelayQueue<T> where T : DelayQueueParam{private List<T>[] queue;private int currentIndex = 1;public DelayQueue(int length){queue = new List<T>[length];}public void Insert(T item, DateTime time){//根据消费时间计算消息应该放入的位置var second = (int)(time - DateTime.Now).TotalSeconds;item.CycleNum = second / queue.Length;item.Slot = (second + currentIndex) % queue.Length;//加入到延时队列中if (queue[item.Slot] == null){queue[item.Slot] = new List<T>();}queue[item.Slot].Add(item);}public void Remove(T item){if (queue[item.Slot] != null){queue[item.Slot].Remove(item);}}public void Read(){if (queue.Length >= currentIndex){var list = queue[currentIndex - 1];if (list != null){List<T> target = new List<T>();foreach (var item in list){if (item.CycleNum == 0){//在本轮命中,用单独线程去执行业务操作Task.Run(()=> { item.Callback(item); });target.Add(item);}else{//等下一轮item.CycleNum--;System.Diagnostics.Debug.WriteLine($"@@@@@索引:{item.Slot},剩余:{item.CycleNum}");}}//把已过期的移除掉foreach (var item in target){list.Remove(item);}}currentIndex++;//下一遍从头开始if (currentIndex > queue.Length){currentIndex = 1;}}}}

复制代码

接下来是使用方法。

创建一个管理队列实例的静态类,里面封装对队列的操作:

复制代码

    public static class NotifyPlanManager{private static DelayQueue<NotifyPlan> _queue = new DelayQueue<NotifyPlan>(60);public static void Insert(NotifyPlan plan, DateTime time){_queue.Insert(plan, time);}public static void Read(){_queue.Read();}}

复制代码

构建我们的实际业务参数类,派生自DelayQueueParam:

复制代码

    public class NotifyPlan : DelayQueueParam{public Guid CamId { get; set; }public int PreviousTotal { get; set; }public int Amount { get; set; }}

复制代码

生产端往队列中插入数据:

复制代码

    Action<object> callback = (result) =>{var np = result as NotifyPlan;//这里做自己的业务操作//举个例子:Debug.WriteLine($"活动ID:{np.CamId},已发送数量:{np.PreviousTotal},本次发送数量:{np.Amount}");};NotifyPlanManager.Insert(new NotifyPlan{Amount = set.MainAmount,CamId = camId,PreviousTotal = 0,Callback = callback}, smsTemplate.SendDate);

复制代码

再创建一个每秒执行一次的定时器用做消费端,我这里使用的是FluentScheduler,核心代码:

复制代码

    internal class NotifyPlanJob : IJob{/// <summary>/// 执行计划/// </summary>public void Execute(){NotifyPlanManager.Read();}}internal class JobFactory : Registry{public JobFactory(){//每秒运行一次Schedule<NotifyPlanJob >().ToRunEvery(1).Seconds();}}JobManager.Initialize(new JobFactory());

复制代码

然后开启调试运行,打开本机的系统时间面板,对着时间看输出结果。亲测有效。

 

总结

 这种方案的好处是避免了频繁地扫描数据库和不必要的业务操作,另外也很方便控制时间精度。带来的问题是如果web服务异常或重启可能会发生任务丢失的情况,我目前的处理方法是在数据库中标记任务状态,服务启动时把状态为“排队中”的任务重新加载到队列中等待消费。

以上方案在单机环境测试没问题,多节点情况下暂时没有深究。若有设计实现上的缺陷,欢迎讨论与指正,要是有更好的方案,那就当抛砖引玉,再好不过了~

这篇关于环形定时任务 原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146702

相关文章

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

hdu4407容斥原理

题意: 有一个元素为 1~n 的数列{An},有2种操作(1000次): 1、求某段区间 [a,b] 中与 p 互质的数的和。 2、将数列中某个位置元素的值改变。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.Inpu

hdu4059容斥原理

求1-n中与n互质的数的4次方之和 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import java.io.InputStreamReader;import java.io.PrintWrit

ActiveMQ—消息特性(延迟和定时消息投递)

ActiveMQ消息特性:延迟和定时消息投递(Delay and Schedule Message Delivery) 转自:http://blog.csdn.net/kimmking/article/details/8443872 有时候我们不希望消息马上被broker投递出去,而是想要消息60秒以后发给消费者,或者我们想让消息没隔一定时间投递一次,一共投递指定的次数。。。 类似

寻迹模块TCRT5000的应用原理和功能实现(基于STM32)

目录 概述 1 认识TCRT5000 1.1 模块介绍 1.2 电气特性 2 系统应用 2.1 系统架构 2.2 STM32Cube创建工程 3 功能实现 3.1 代码实现 3.2 源代码文件 4 功能测试 4.1 检测黑线状态 4.2 未检测黑线状态 概述 本文主要介绍TCRT5000模块的使用原理,包括该模块的硬件实现方式,电路实现原理,还使用STM32类

TL-Tomcat中长连接的底层源码原理实现

长连接:浏览器告诉tomcat不要将请求关掉。  如果不是长连接,tomcat响应后会告诉浏览器把这个连接关掉。    tomcat中有一个缓冲区  如果发送大批量数据后 又不处理  那么会堆积缓冲区 后面的请求会越来越慢。

PHP原理之内存管理中难懂的几个点

PHP的内存管理, 分为俩大部分, 第一部分是PHP自身的内存管理, 这部分主要的内容就是引用计数, 写时复制, 等等面向应用的层面的管理. 而第二部分就是今天我要介绍的, zend_alloc中描写的关于PHP自身的内存管理, 包括它是如何管理可用内存, 如何分配内存等. 另外, 为什么要写这个呢, 因为之前并没有任何资料来介绍PHP内存管理中使用的策略, 数据结构, 或者算法. 而在我们

Smarty模板执行原理

为了实现程序的业务逻辑和内容表现页面的分离从而提高开发速度,php 引入了模板引擎的概念,php 模板引擎里面最流行的可以说是smarty了,smarty因其功能强大而且速度快而被广大php web开发者所认可。本文将记录一下smarty模板引擎的工作执行原理,算是加深一下理解。 其实所有的模板引擎的工作原理是差不多的,无非就是在php程序里面用正则匹配将模板里面的标签替换为php代码从而将两者