[Python]生成器和yield关键字

2024-09-07 22:36

本文主要是介绍[Python]生成器和yield关键字,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

生成器和yield关键字

1.生成器介绍:

概述:
​ 它指的是 generator, 类似于以前学过的: 列表推导式, 集合推导式, 字典推导式…
作用:
​ 降低资源消耗, 快速(批量)生成数据.
实现方式:

​ 1.推导式写法.

my_generator = (i for i in range(5))

​ 2.yield写法.

def get_generator():for i in range(1, 6):yield i     # yield会记录每个生成的数据, 然后逐个的放到生成器对象中, 最终返回生成器对象.

问题: 如何从生成器对象中获取数据?
​ 答案:

​ 1.for循环遍历

​ 2.next()函数, 逐个获取.

# 案例1: 回顾之前的列表推导式, 集合推导式.
# 需求: 生成 1 ~ 5 的数据.
my_list = [i for i in range(1, 6)]
print(my_list, type(my_list))   # [1, 2, 3, 4, 5] <class 'list'>my_set = {i for i in range(1, 6)}
print(my_set, type(my_set))     # {1, 2, 3, 4, 5} <class 'set'># 案例2: 演示 生成器写法1, 推导式写法
# 尝试写一下, "元组"推导式, 发现打印的结果不是元组, 而是对象, 因为这种写法叫: 生成器.
my_tuple = (i for i in range(1, 6))print(my_tuple)             # <generator object <genexpr> at 0x0000024C90F056D0>    生成器对象
print(type(my_tuple))       # <class 'generator'>       生成器类型
print('-' * 31)# 案例3: 如何从生成器对象中获取数据呢?
# 1. 定义生成器, 获取 1 ~ 5的数字.
my_generator = (i for i in range(1, 6))# 2. 从生成器中获取数据.
# 格式1: for循环遍历
for i in my_generator:print(i)# 格式2: next()函数, 逐个获取.
print(next(my_generator))       # 1
print(next(my_generator))       # 2
2.yield关键字
# 案例: 演示 yield关键字方式, 获取生成器.# 需求: 自定义 get_generator()函数, 获取 包括: 1 ~ 5之间的整数 生成器.
# 1. 定义函数.
def get_generator():"""用于演示 yield关键字的用法:return: 生成器对象."""# 思路1: 自定义列表, 添加指定元素, 并返回.# my_list = []# for i in range(1, 6):#     my_list.append(i)# return my_list# 思路2: yield写法, 即: 如下的代码, 效果同上.for i in range(1, 6):yield i     # yield会记录每个生成的数据, 然后逐个的放到生成器对象中, 最终返回生成器对象.# 在main中测试.
if __name__ == '__main__':# 2. 调用函数, 获取生成器对象.my_generator = get_generator()# 3. 从生成器中获取每个元素.print(next(my_generator))   # 1print(next(my_generator))   # 2print('-' * 31)# 4. 遍历, 获取每个元素.for i in my_generator:print(i)
3.生成批次的数据
案例: 用生成器生成批次数据, 在模型训练中, 数据都是分批次来 "喂".需求: 读取项目下的  jaychou_lyrics.txt文件(其中有5000多条 歌词数据), 按照8/ 批次, 获取生成器, 并从中获取数据.
"""
import math# 需求1: 铺垫知识,  math.ceil(数字):  获取指定数字的天花板数(向上取整), 即: 比这个数字大的所有整数中, 最小的哪个整数.
# print(math.ceil(5.1))       # 6
# print(math.ceil(5.6))       # 6
# print(math.ceil(5.0))       # 5# 需求2: 获取生成器对象, 从文件中读数据数据, n条 / 批次
# 1. 定义函数 dataset_loader(batch_size), 表示: 数据生成器, 按照 batch_size条 分批.
def dataset_loader(batch_size):     # 假设: batch_size = 8"""该函数用于获取生成器对象, 每条数据都是一批次的数据.: 生成器(8, 8, 8...):param batch_size: 每批次有多少条数据:return: 返回生成器对象."""# 1.1 读取文件, 获取到每条(每行)数据.with open("./jaychou_lyrics.txt", 'r', encoding='utf-8') as f:# 一次读取所有行, 每行封装成字符串, 整体放到列表中.data_lines = f.readlines()      # 结果: [第一行, 第二行, 第三行...]# 1.2 根据上述的数据, 计算出: 数据的总条数(总行数), 假设: 100行(条)line_count = len(data_lines)# 1.3 基于上述的总条数 和 batch_size(每批次的条数), 获取: 批次总数(即: 总共多少批)batch_count = math.ceil(line_count / batch_size)        # 例如: math.ceil(100 / 8) = 13# 1.4 具体的获取每批次数据的动作, 用 yield包裹, 放到生成器中, 并最终返回生成器(对象)即可.for i in range(batch_count):        # batch_count的值: 13,  i的值: 0, 1, 2, 3, 4, 5, .... 12# 1.5 yield会记录每批次数据, 封装到生成器中, 并返回(生成器对象)"""推理过程:i = 0, 代表第1批次数据, 想要 第 1~~~~8 条数据,:  data_lines[0:8]      i = 1, 代表第2批次数据, 想要 第 9~~~~16 条数据,:  data_lines[8:16]      i = 2, 代表第3批次数据, 想要 第 17~~~~24 条数据,:  data_lines[16:24]......      """yield data_lines[i * batch_size: i * batch_size + batch_size]# 在main中, 测试调用
if __name__ == '__main__':# 2. 获取生成器对象.my_generator = dataset_loader(13)# 3. 从生成器中获取第 1 批数据.# print(next(my_generator))# # 从第一批次中, 获取具体的每一条数据.# for line in next(my_generator):#     print(line, end='')## print('-' * 31)## # 从第二批次中, 获取具体的每一条数据.# for line in next(my_generator):#     print(line, end='')# print('-' * 31)# 4. 查看具体的每一批数据.for batch_data in my_generator:print(batch_data)

文件:jaychou_lyrics.txt


这篇关于[Python]生成器和yield关键字的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146350

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(