DataX的如何使用hdfsreader/writer

2024-09-07 16:20
文章标签 使用 datax writer hdfsreader

本文主要是介绍DataX的如何使用hdfsreader/writer,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

说明:DataX的hdfs读取或写入一般用的比较少,国内用datax通常都是用它完成数据仓库之间的数据迁移,很少以文件的形式直接迁移,对于hdfs来讲,datax提供了hdfsreader和hdfswriter,本篇以文件的方式导入或导出hive数据为例,展示datax的hdfsreader/writer怎么用,因为整体的技术大环境下使得datax提供的hdfsreader/writer也是以结构化数据的方式传递文件,但是要提前说明的是,虽然hive不是数据库,它只是hdfs数据的结构化管理工具,但是hive支持jdbc的形式使用,所以datax默认没有自带所谓的hivereader/writer,如果你的技术环境很干净的场景下,例如你使用的就是原生的或者hdp这种定制化不高,一般用在基础架构上的技术环境的话,你可以直接采用jdbcreader/writer去迁移hive数据。本篇只是为了展示hdfsreader/writer如何写任务Json配置,所以借用hive为使用例子,因为它底层就是hdfs的文件。同样的正是因为datax本身并没有自带所谓的hivereader/writer,所以如大家在工作中使用的中台之类的产品,你看到的日志中输出的hivereader之类的配置,那都是中台自己的RD二次开发的,同时datax本身也支持用户二次开发reader/writer。言归正传,用hive为例hdfsreader/writer使用方式如下。

第一种:全字段数据,源数据hive,目的库关系型数据库,比如mysql。全表时hdfsreader的column可以简写为*

{"job": {"content": [{"reader": {"name": "hdfsreader", "parameter": {"column": ["*"], "defaultFS": "hdfs://hdp1:9000","encoding": "UTF-8","fieldDelimiter": ",","fileType": "text","path": "/hiveData/test"}}, "writer": {"name": "mysqlwriter", "parameter": {"column": ["id","name","sex"], "connection": [{"jdbcUrl": "jdbc:mysql://192.168.0.103:3306/shop?useUnicode=true&characterEncoding=utf8", "table": ["test"]}], "password": "123456", "username": "root", "writeMode": "insert"}}}], "setting": {"speed": {"channel": "1"}}}
}

第二种,部分字段,源数据hive,目的库关系型数据库,比如mysql。

{"job": {"content": [{"reader": {"name": "hdfsreader", "parameter": {"column": [{"index":1,"name": "name", "type": "string"},{"index":2,"name": "sex", "type": "string"},], "defaultFS": "hdfs://hdp1:9000","encoding": "UTF-8","fieldDelimiter": ",","fileType": "text","path": "/hiveData/test"}}, "writer": {"name": "mysqlwriter", "parameter": {"column": ["name","sex"], "connection": [{"jdbcUrl": "jdbc:mysql://192.168.0.103:3306/shop?useUnicode=true&characterEncoding=utf8", "table": ["test"]}], "password": "123456", "username": "root", "writeMode": "insert"}}}], "setting": {"speed": {"channel": "1"}}}
}

如果你要对,目的端在数据落库之前做一些预处理,可以在writer的Json部分写如下配置,比如要删掉目的mysql表中的一些数据

"preSql": ["delete from paper_avgtimeandscore where s='1' "
]

从hive数据里抽,一般就上面这两种情况,注意原生情况下hdfsreader是没有提供数据过滤能力,就是where,因为抽取的时候一般都是按分区抽,或者干脆就是全量,对于where的需求在hive里面就已经解决了,一般是做一个dwd报表,说白了数据从hive出来的时候就没有where的业务必要,所以hdfsreader就不含有这种能力,除非向开头说的那样市场上存在的第三方hivereader插件。

第三种:从其他数据端抽取数据落到hive中,比如从mysql抽,最后落库到hive

{"job": {"setting": {"speed": {"channel": 1}},"content": [{"reader": {"name": "mysqlreader","parameter": {"username": "root","password": "123456","connection": [{"jdbcUrl": ["jdbc:mysql://192.168.0.103:3306/shop?useUnicode=true&characterEncoding=utf8"],"querySql": ["SELECT id, name, sex FROM your_table_name"]}]}},"writer": {"name": "hdfswriter","parameter": {"defaultFS": "hdfs://hdp1:9000","fileType": "text","path": "/hiveData/test","fileName": "part-0101","column": [{"name": "id", "type": "string"},{"name": "name", "type": "string"},{"name": "sex", "type": "string"}],"fieldDelimiter": ",","writeFormat": "text","writeMode": "append"}}}]}
}

无论是你导入还导出一定要注意的点:两端的列名定义,一定要一一对应,比方说hdfsreader的column中,你可以不定义name属性,但必须定义index,index的值是hdfs文件中列的下标,并且每一个column中的Json对象,要和输出端,如在本例中是mysqlwriter的column部分一一对应,不能错列,就是说你reader端第一个column定义的是hdfs文件中下标为2的列,那么下面输出端的column中第一个也必须是hdfs文件中下标为2这一列数据你希望对应的列,反过来也是一样的,DataX不会给你自动识别位置的,因为人家本身就是为了文件传递而存在,开发用意上就没考虑hive。因此它没办法在其他数据库导入数据到hive时,完成部分字段导入,要实现这一点就要去自定义hivereader或者用jdbc了,你直接用hdfswriter写的话会发现数据任然是顺序依次的系列化,和列明对不上的。而hive数据导出到其他数据库的时候可以部分字段导,那是因为本质上输出端还是用的对应数据库的jdbc,只不过列名的顺序是你提供的罢了

在使用DataX的时候,对于高可用的Hadoop集群,要注意一点,我上面写的例子都是直接指定的namenode,如果你要把抽取程序运行到高可用的集群上的话,就要在hdfswriter或hdfsreader的parameter中加如下配置,既高可用namenode节点的配置信息,当然配置改成你自己的

"hadoopConfig":{"dfs.nameservices": "mycluster","dfs.ha.namenodes.mycluster": "nn1,nn2","dfs.namenode.rpc-address.mycluster.nn1": "hadoop101:8020","dfs.namenode.rpc-address.mycluster.nn2": "hadoop102:8020","dfs.client.failover.proxy.provider.mycluster": "org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider"
}

然后上面json文件里defaultFS也就写高可用逻辑组名就行

"defaultFS": "hdfs://mycluster",

之所以要这么干,是因为DataX不去识别你的本地Hadoop配置,或者是HOME,它本身就允许你不在Hadoop集群节点上跑数据。

这篇关于DataX的如何使用hdfsreader/writer的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1145551

相关文章

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MyBatis ParameterHandler的具体使用

《MyBatisParameterHandler的具体使用》本文主要介绍了MyBatisParameterHandler的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、概述二、源码1 关键属性2.setParameters3.TypeHandler1.TypeHa

Spring 中的切面与事务结合使用完整示例

《Spring中的切面与事务结合使用完整示例》本文给大家介绍Spring中的切面与事务结合使用完整示例,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录 一、前置知识:Spring AOP 与 事务的关系 事务本质上就是一个“切面”二、核心组件三、完