SylixOS ARM平台下内存对齐访问

2024-09-07 15:32

本文主要是介绍SylixOS ARM平台下内存对齐访问,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.内存对齐

1.1     内存对齐概要

现代计算机中内存空间都是按照byte划分的,从理论上讲对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定变量的时候经常在特定的内存地址访问,这就需要各类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个的排放,这就是对齐。

1.2     内存对齐作用和原因

各个硬件平台对存储空间的处理上有很大的不同。一些平台对某些特定类型的数据只能从某些特定地址开始存取。其他平台可能没有这种情况,但是最常见的是如果不按照适合其平台的要求对数据存放进行对齐,会在存取效率上带来损失。比如有些平台每次读都是从偶地址开始,如果一个int型(假设为 32位)如果存放在偶地址开始的地方,那么一个读周期就可以读出,而如果存放在奇地址开始的地方,就可能会需要2个读周期,并对两次读出的结果的高低字节进行拼凑才能得到该int数据。显然在读取效率上下降很多。这也是空间和时间的博弈。

2.ARM平台下内存对齐

在ARM中,有ARM和Thumb两种指令。ARM指令:每执行一条指令,PC的值加4个字节(32bits),一次访问4字节内容,该字节的起始地址必须是4字节对齐的位置上,即地址的低两位为bits[0b00],也就是说地址必须是4的倍数。Thumb指令:每执行一条指令,PC的值加2个字节(16bits),一次访问2字节内容,该字节的起始地址必须是2字节对齐的位置上,即地址的低两位为bits[0b0],也就是说地址必须是2的倍数。

遵循以上方式叫对齐(aligned)存储访问操作,不遵守这样方式称为非对齐(unaligned)存储访问操作。SylixOS下的ARM平台遵守对齐方式。

ARM平台下由于内存对齐产生的问题,如程序清单 2.1,是一段由于ARM平台下遵守内存对齐访问产生问题的代码,代码是一个简单的宏定义将VAL值赋值到DATA地址上。在程序中我们无法保证传进的参数DATA是4的整数倍,所以导致了会出现内存访问异常的现象。程序在运行中出现地址访问错误后退出。

程序清单2.1 平台下问题代码

    …

#define EC_WRITE_U32(DATA, VAL) \

        do { \

            *((uint32_t *) (DATA)) = cpu_to_le32((uint32_t) (VAL)); \

    } while (0)      

3.ARM平台下解决方案

上述问题可以修改应用层代码去避免此类问题。如程序清单3.1,我们定义宏如果不是X86平台,直接将uint32_t内存地址强制转换成uint8_t地址,再将数据VAL强制拆分成4个uint8_t型数据分别赋值到对应的uint8_t内存地址上。
          程序清单3.1 ARM平台下避免字节对齐访问

 … 

   #ifdef X86_PLATFORM

   #define EC_WRITE_U32(DATA, VAL) \

   do { \

           *((uint32_t *) (DATA)) = cpu_to_le32((uint32_t) (VAL)); \

        } while (0)

   #else

   #define EC_WRITE_U32(DATA, VAL) \

   do { \

          *((uint8_t *) (DATA)) = (cpu_to_le32((uint32_t) (VAL))) & 0xff

           *(((uint8_t *) (DATA)) + 1) =(cpu_to_le32((uint32_t)(VAL)) >> 8) & 0xff; \

         *(((uint8_t *) (DATA)) + 2) = (cpu_to_le32((uint32_t) (VAL)) >> 16) & 0xff; \

         *(((uint8_t *) (DATA)) + 3) = (cpu_to_le32((uint32_t) (VAL)) >> 24) & 0xff; \

       } while (0)

       …




这篇关于SylixOS ARM平台下内存对齐访问的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1145441

相关文章

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

本地搭建DeepSeek-R1、WebUI的完整过程及访问

《本地搭建DeepSeek-R1、WebUI的完整过程及访问》:本文主要介绍本地搭建DeepSeek-R1、WebUI的完整过程及访问的相关资料,DeepSeek-R1是一个开源的人工智能平台,主... 目录背景       搭建准备基础概念搭建过程访问对话测试总结背景       最近几年,人工智能技术

Ollama整合open-webui的步骤及访问

《Ollama整合open-webui的步骤及访问》:本文主要介绍如何通过源码方式安装OpenWebUI,并详细说明了安装步骤、环境要求以及第一次使用时的账号注册和模型选择过程,需要的朋友可以参考... 目录安装环境要求步骤访问选择PjrIUE模型开始对话总结 安装官方安装地址:https://docs.

Linux内存泄露的原因排查和解决方案(内存管理方法)

《Linux内存泄露的原因排查和解决方案(内存管理方法)》文章主要介绍了运维团队在Linux处理LB服务内存暴涨、内存报警问题的过程,从发现问题、排查原因到制定解决方案,并从中学习了Linux内存管理... 目录一、问题二、排查过程三、解决方案四、内存管理方法1)linux内存寻址2)Linux分页机制3)

解读静态资源访问static-locations和static-path-pattern

《解读静态资源访问static-locations和static-path-pattern》本文主要介绍了SpringBoot中静态资源的配置和访问方式,包括静态资源的默认前缀、默认地址、目录结构、访... 目录静态资源访问static-locations和static-path-pattern静态资源配置

Java循环创建对象内存溢出的解决方法

《Java循环创建对象内存溢出的解决方法》在Java中,如果在循环中不当地创建大量对象而不及时释放内存,很容易导致内存溢出(OutOfMemoryError),所以本文给大家介绍了Java循环创建对象... 目录问题1. 解决方案2. 示例代码2.1 原始版本(可能导致内存溢出)2.2 修改后的版本问题在

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

Redis多种内存淘汰策略及配置技巧分享

《Redis多种内存淘汰策略及配置技巧分享》本文介绍了Redis内存满时的淘汰机制,包括内存淘汰机制的概念,Redis提供的8种淘汰策略(如noeviction、volatile-lru等)及其适用场... 目录前言一、什么是 Redis 的内存淘汰机制?二、Redis 内存淘汰策略1. pythonnoe

Java访问修饰符public、private、protected及默认访问权限详解

《Java访问修饰符public、private、protected及默认访问权限详解》:本文主要介绍Java访问修饰符public、private、protected及默认访问权限的相关资料,每... 目录前言1. public 访问修饰符特点:示例:适用场景:2. private 访问修饰符特点:示例:

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J