CIBERSORT 学习笔记

2024-09-07 12:48
文章标签 学习 笔记 cibersort

本文主要是介绍CIBERSORT 学习笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • CIBERSORT
  • 一、CIBERSORT 是什么
  • 二、CIBERSORT 怎么用
  • 三、CIBERSORT 结果可视化


CIBERSORT

CIBERSORT is an analytical tool from the Alizadeh Lab developed by Newman et al. to provide an estimation of the abundances of member cell types in a mixed cell population, using gene expression data.
CIBERSORTx, the next generation version of CIBERSORT, is now available (Newman et al.), with support for single-cell RNA-seq and cell type-specific gene expression purification. We recommend moving over to the CIBERSORTx website. For users who registered with CIBERSORT prior to 2018, you may log in with your CIBERSORT account credentials, otherwise please register for a new account.

CIBERSORT 旧版官网入口:https://cibersort.stanford.edu/
现在新版本名字加了一个x,叫CIBERSORTx,主要增加了适配大量组织(bulk tissue)样本单细胞测序方面的功能,新版入口:https://cibersortx.stanford.edu/
原文地址:https://www.nature.com/articles/nmeth.3337


一、CIBERSORT 是什么

在这里插入图片描述

CIBERSORTx is an analytical tool from the Alizadeh Lab and Newman Lab to impute gene expression profiles and provide an estimation of the abundances of member cell types in a mixed cell population, using gene expression data. (输入基因表达矩阵,输出样本中的各种细胞类型的丰度。比较有意思的是,CIBERSORT的设计之初的核心目标是“predicting fractions of multiple cell types in gene expression profiles (GEPs)”,可能例子里22个免疫细胞 signature让人太过印象深刻,几乎全互联网的教程都是基于免疫细胞的,CIBERSORT也被认为是专门用来量化免疫浸润的,其实signature是可以按需求自行选择的。)


二、CIBERSORT 怎么用

CIBERSORT可以在线用(第一部分有官网,里面有详细教程),也可以在本地用R环境跑。CIBERSORT是基于线性支持向量回归(SVR)开发的,gene作为输入在计算过程中去卷积化。CIBERSORT主要需要ν-SVR算法的库, 用R去执行CIBERSORT的话,需要加载 R package e1071作为前置条件。

CIBERSORT R script v1.04 代码:

# CIBERSORT R script v1.04 (last updated 10-24-2016)
# Note: Signature matrix construction is not currently available; use java version for full functionality.
# Author: Aaron M. Newman, Stanford University (amnewman@stanford.edu)
# Requirements:
#       R v3.0 or later. (dependencies below might not work properly with earlier versions)
#       install.packages('e1071')
#       install.pacakges('parallel')
#       install.packages('preprocessCore')
#       if preprocessCore is not available in the repositories you have selected, run the following:
#           source("http://bioconductor.org/biocLite.R")
#           biocLite("preprocessCore")
# Windows users using the R GUI may need to Run as Administrator to install or update packages.
# This script uses 3 parallel processes.  Since Windows does not support forking, this script will run
# single-threaded in Windows.
#
# Usage:
#       Navigate to directory containing R script
#
#   In R:
#       source('CIBERSORT.R')
#       results <- CIBERSORT('sig_matrix_file.txt','mixture_file.txt', perm, QN, absolute, abs_method)
#
#       Options:
#       i)   perm = No. permutations; set to >=100 to calculate p-values (default = 0)
#       ii)  QN = Quantile normalization of input mixture (default = TRUE)
#       iii) absolute = Run CIBERSORT in absolute mode (default = FALSE)
#               - note that cell subsets will be scaled by their absolute levels and will not be
#                 represented as fractions (to derive the default output, normalize absolute
#                 levels such that they sum to 1 for each mixture sample)
#               - the sum of all cell subsets in each mixture sample will be added to the ouput
#                 ('Absolute score'). If LM22 is used, this score will capture total immune content.
#       iv)  abs_method = if absolute is set to TRUE, choose method: 'no.sumto1' or 'sig.score'
#               - sig.score = for each mixture sample, define S as the median expression
#                 level of all genes in the signature matrix divided by the median expression
#                 level of all genes in the mixture. Multiple cell subset fractions by S.
#               - no.sumto1 = remove sum to 1 constraint
#
# Input: signature matrix and mixture file, formatted as specified at http://cibersort.stanford.edu/tutorial.php
# Output: matrix object containing all results and tabular data written to disk 'CIBERSORT-Results.txt'
# License: http://cibersort.stanford.edu/CIBERSORT_License.txt#Core algorithm
CoreAlg <- function(X, y, absolute, abs_method){#try different values of nusvn_itor <- 3res <- function(i){if(i==1){nus <- 0.25}if(i==2){nus <- 0.5}if(i==3){nus <- 0.75}model<-svm(X,y,type="nu-regression",kernel="linear",nu=nus,scale=F)model}if(Sys.info()['sysname'] == 'Windows') out <- mclapply(1:svn_itor, res, mc.cores=1) elseout <- mclapply(1:svn_itor, res, mc.cores=svn_itor)nusvm <- rep(0,svn_itor)corrv <- rep(0,svn_itor)#do cibersortt <- 1while(t <= svn_itor) {weights = t(out[[t]]$coefs) %*% out[[t]]$SVweights[which(weights<0)]<-0w<-weights/sum(weights)u <- sweep(

这篇关于CIBERSORT 学习笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1145101

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件