【PyTorch】使用容器(Containers)进行网络层管理(Module)

2024-09-07 06:28

本文主要是介绍【PyTorch】使用容器(Containers)进行网络层管理(Module),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、Sequential
  • 二、ModuleList
  • 三、ModuleDict
  • 四、ParameterList & ParameterDict
  • 总结


前言

当深度学习模型逐渐变得复杂,在编写代码时便会遇到诸多麻烦,此时便需要Containers的帮助。Containers的作用是将一部分网络层模块化,从而更方便地管理和调用。本文介绍PyTorch库常用的nn.Sequential,nn.ModuleList,nn.ModuleDict容器以及nn.ParameterList & ParameterDict参数容器。


一、Sequential

Sequential是最为常用的容器,它的功能也十分简单直接-将多个网络层按照固定的顺序连接,从前往后依次执行。比如在AlexNet中,多次需要conv+relu+maxpool的组合,此时便可以将其放入Sequential容器,便于在forward中调用。
下面来看PyTorch官方代码示例:

model = nn.Sequential(nn.Conv2d(1,20,5),nn.ReLU(),nn.Conv2d(20,64,5),nn.ReLU())# Using Sequential with OrderedDict. This is functionally the# same as the above codemodel = nn.Sequential(OrderedDict([('conv1', nn.Conv2d(1,20,5)),('relu1', nn.ReLU()),('conv2', nn.Conv2d(20,64,5)),('relu2', nn.ReLU())]))

示例中展示了两种Sequential使用方法:1,直接串联各个网络层。2,使用OrderedDict为每个module取名。这两种方法是等效的。


二、ModuleList

"顾名思义"ModuleList的作用如同Python的列表,将各个层存入一个类似于List的结构中,从而可以利用索引来进行调用。
注意这里是类似于list的结构,那为什么我们不直接用list呢?
ModuleList是专门为Pytorch中的神经网络模块(即继承自nn.Module的类)设计的容器。它确保所有添加到其中的模块都会正确地注册到网络中,以便进行参数管理和梯度更新。当模型被保存或加载时,nn.ModuleList中的模块也会相应地被保存或加载。而Python的列表是一个通用的容器,可以存储任意类型的对象。它没有专门为神经网络模块设计,因此不会进行参数的自动注册或管理。
代码示例:

class MyModule(nn.Module):def __init__(self):super(MyModule, self).__init__()self.linears = nn.ModuleList([nn.Linear(10, 10) for i in range(10)])# self.linears = [nn.Linear(10, 10) for i in range(10)]    def forward(self, x):for sub_layer in self.linears:x = sub_layer(x)return x

三、ModuleDict

ModuleDict是一个类似python字典的容器,相比于ModuleList,它的优点在于可以利用名字来调用网络层,这就避免了必须记住网络层具体元素才能调用的麻烦。
代码示例:

 class MyModule2(nn.Module):def __init__(self):super(MyModule2, self).__init__()self.choices = nn.ModuleDict({'conv': nn.Conv2d(3, 16, 5),'pool': nn.MaxPool2d(3)})self.activations = nn.ModuleDict({'lrelu': nn.LeakyReLU(),'prelu': nn.PReLU()})def forward(self, x, choice, act):x = self.choices[choice](x)x = self.activations[act](x)return x

四、ParameterList & ParameterDict

除了Module有容器,Parameter也有容器。与ModuleList和ModuleDict类似的,Paramter也有List和Dict,使用方法一样。

class MyModule(nn.Module):def __init__(self):super(MyModule, self).__init__()self.params = nn.ParameterDict({'left': nn.Parameter(torch.randn(5, 10)),'right': nn.Parameter(torch.randn(5, 10))})def forward(self, x, choice):x = self.params[choice].mm(x)return x# ParameterListclass MyModule(nn.Module):def __init__(self):super(MyModule, self).__init__()self.params = nn.ParameterList([nn.Parameter(torch.randn(10, 10)) for i in range(10)])def forward(self, x):# ParameterList can act as an iterable, or be indexed using intsfor i, p in enumerate(self.params):x = self.params[i // 2].mm(x) + p.mm(x)return x

这是专门为Pytorch中的参数(如权重和偏置)设计的容器。它确保添加到其中的参数会被正确地注册到网络中,以便进行参数管理和梯度更新。与module类似,参数容器中的参数也会被包含在网络的参数列表中,并在模型保存和加载时被正确处理。


总结

容器是pytorch框架对网络进行组织管理的实用工具,合理运用可以极大提高代码的可读性与可维护性。

这篇关于【PyTorch】使用容器(Containers)进行网络层管理(Module)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144313

相关文章

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你

如何解决idea的Module:‘:app‘platform‘android-32‘not found.问题

《如何解决idea的Module:‘:app‘platform‘android-32‘notfound.问题》:本文主要介绍如何解决idea的Module:‘:app‘platform‘andr... 目录idea的Module:‘:app‘pwww.chinasem.cnlatform‘android-32

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

python uv包管理小结

《pythonuv包管理小结》uv是一个高性能的Python包管理工具,它不仅能够高效地处理包管理和依赖解析,还提供了对Python版本管理的支持,本文主要介绍了pythonuv包管理小结,具有一... 目录安装 uv使用 uv 管理 python 版本安装指定版本的 Python查看已安装的 Python

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

Python虚拟环境终极(含PyCharm的使用教程)

《Python虚拟环境终极(含PyCharm的使用教程)》:本文主要介绍Python虚拟环境终极(含PyCharm的使用教程),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录一、为什么需要虚拟环境?二、虚拟环境创建方式对比三、命令行创建虚拟环境(venv)3.1 基础命令3

Python Transformer 库安装配置及使用方法

《PythonTransformer库安装配置及使用方法》HuggingFaceTransformers是自然语言处理(NLP)领域最流行的开源库之一,支持基于Transformer架构的预训练模... 目录python 中的 Transformer 库及使用方法一、库的概述二、安装与配置三、基础使用:Pi

关于pandas的read_csv方法使用解读

《关于pandas的read_csv方法使用解读》:本文主要介绍关于pandas的read_csv方法使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录pandas的read_csv方法解读read_csv中的参数基本参数通用解析参数空值处理相关参数时间处理相关