【python pytorch】Pytorch 基础知识

2024-09-07 06:18
文章标签 python pytorch 基础知识

本文主要是介绍【python pytorch】Pytorch 基础知识,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

包含知识点:

  • 张量
  • 数学操作
  • 数理统计
  • 比较操作
#-*-coding:utf-8-*-import numpy as np
np.set_printoptions(suppress=True)
import torch# 构造一个4*5 的矩阵
z=torch.Tensor(4,5)
print(z)# 两个矩阵进行加法操作
y=torch.rand(4,5)print(z+y)
# 另一种表示
print(torch.add(z,y))# 将tensor 转换为numpy
b=y.numpy()print(b)# 数学操作绝对值
kk=torch.abs(torch.FloatTensor([-4,6,90]))
print(kk)# 均值(行操作)
print(torch.mean(kk,0))# 比较操作m1=torch.equal(torch.Tensor([1,2]),torch.Tensor([1,2]))m2=torch.equal(torch.Tensor([1,2]),torch.Tensor([2,2]))m3=torch.eq(torch.Tensor([1,2]),torch.Tensor([2,2]))
m4=torch.gt(torch.Tensor([1,2]),torch.Tensor([2,2]))print(m1)print(m2)print(m3)print(m4)

运行结果:

tensor([[ 0.0000,  0.0000,  0.0000,  0.0000, -3.7296],[ 0.0000, -8.2118,  0.0000,  0.0000,  0.0000],[ 0.0000,  0.0000, -4.0750,  0.0000, -8.2119],[ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000]])
tensor([[ 0.3490,  0.7795,  0.1428,  0.2517, -3.1552],[ 0.0427, -7.5753,  0.1780,  0.7305,  0.7264],[ 0.2967,  0.2977, -3.8018,  0.2856, -8.0059],[ 0.9123,  0.6403,  0.8935,  0.9008,  0.6926]])
tensor([[ 0.3490,  0.7795,  0.1428,  0.2517, -3.1552],[ 0.0427, -7.5753,  0.1780,  0.7305,  0.7264],[ 0.2967,  0.2977, -3.8018,  0.2856, -8.0059],[ 0.9123,  0.6403,  0.8935,  0.9008,  0.6926]])
[[0.34903067 0.7795371  0.14277744 0.25165677 0.57442063][0.04269707 0.63649714 0.17801785 0.73047435 0.72639245][0.29670775 0.29770297 0.27317053 0.28561223 0.20602047][0.91231096 0.6403226  0.8934667  0.90082955 0.69256335]]
tensor([  4.,   6.,  90.])
tensor(33.3333)
True
False
tensor([ 0,  1], dtype=torch.uint8)
tensor([ 0,  0], dtype=torch.uint8)Process finished with exit code 0

中文教程:
https://pytorch.apachecn.org/#/

这篇关于【python pytorch】Pytorch 基础知识的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144287

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

linux-基础知识3

打包和压缩 zip 安装zip软件包 yum -y install zip unzip 压缩打包命令: zip -q -r -d -u 压缩包文件名 目录和文件名列表 -q:不显示命令执行过程-r:递归处理,打包各级子目录和文件-u:把文件增加/替换到压缩包中-d:从压缩包中删除指定的文件 解压:unzip 压缩包名 打包文件 把压缩包从服务器下载到本地 把压缩包上传到服务器(zip

计组基础知识

操作系统的特征 并发共享虚拟异步 操作系统的功能 1、资源分配,资源回收硬件资源 CPU、内存、硬盘、I/O设备。2、为应⽤程序提供服务操作系统将硬件资源的操作封装起来,提供相对统⼀的接⼝(系统调⽤)供开发者调⽤。3、管理应⽤程序即控制进程的⽣命周期:进程开始时的环境配置和资源分配、进程结束后的资源回收、进程调度等。4、操作系统内核的功能(1)进程调度能⼒: 管理进程、线

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',

go基础知识归纳总结

无缓冲的 channel 和有缓冲的 channel 的区别? 在 Go 语言中,channel 是用来在 goroutines 之间传递数据的主要机制。它们有两种类型:无缓冲的 channel 和有缓冲的 channel。 无缓冲的 channel 行为:无缓冲的 channel 是一种同步的通信方式,发送和接收必须同时发生。如果一个 goroutine 试图通过无缓冲 channel