Netty源码解析7-ChannelHandler实例之TimeoutHandler

2024-09-06 22:32

本文主要是介绍Netty源码解析7-ChannelHandler实例之TimeoutHandler,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

请戳GitHub原文: https://github.com/wangzhiwubigdata/God-Of-BigData

TimeoutHandler

在开发TCP服务时,一个常见的需求便是使用心跳保活客户端。而Netty自带的三个超时处理器IdleStateHandler,ReadTimeoutHandler和WriteTimeoutHandler可完美满足此需求。其中IdleStateHandler可处理读超时(客户端长时间没有发送数据给服务端)、写超时(服务端长时间没有发送数据到客户端)和读写超时(客户端与服务端长时间无数据交互)三种情况。这三种情况的枚举为:

public enum IdleState {READER_IDLE,    // 读超时WRITER_IDLE,    // 写超时ALL_IDLE    // 数据交互超时}

以IdleStateHandler的读超时事件为例进行分析,首先看类签名:

 public class IdleStateHandler extends ChannelDuplexHandler

注意到此Handler没有Sharable注解,这是因为每个连接的超时时间是特有的即每个连接有独立的状态,所以不能标注Sharable注解。继承自ChannelDuplexHandler是因为既要处理读超时又要处理写超时。
该类的一个典型构造方法如下:

    public IdleStateHandler(int readerIdleTimeSeconds, int writerIdleTimeSeconds, int allIdleTimeSeconds) {this(readerIdleTimeSeconds, writerIdleTimeSeconds,  allIdleTimeSeconds, TimeUnit.SECONDS);}

分别设定各个超时事件的时间阈值。以读超时事件为例,有以下相关的字段:

// 用户配置的读超时时间private final long readerIdleTimeNanos;// 判定超时的调度任务Futureprivate ScheduledFuture<?> readerIdleTimeout;// 最近一次读取数据的时间private long lastReadTime;// 是否第一次读超时事件private boolean firstReaderIdleEvent = true;// 状态,0 - 无关, 1 - 初始化完成 2 - 已被销毁private byte state; // 是否正在读取private boolean reading;

首先看初始化方法initialize():

    private void initialize(ChannelHandlerContext ctx) {switch (state) {case 1: // 初始化进行中或者已完成case 2: // 销毁进行中或者已完成return;}state = 1;lastReadTime = ticksInNanos();if (readerIdleTimeNanos > 0) {readerIdleTimeout = schedule(ctx, new ReaderIdleTimeoutTask(ctx),readerIdleTimeNanos, TimeUnit.NANOSECONDS);}

初始化的工作较为简单,设定最近一次读取时间lastReadTime为当前系统时间,然后在用户设置的读超时时间readerIdleTimeNanos截止时,执行一个ReaderIdleTimeoutTask进行检测。其中使用的方法很简洁,如下:

     long ticksInNanos() {return System.nanoTime();}ScheduledFuture<?> schedule(ChannelHandlerContext ctx, Runnable task, long delay, TimeUnit unit) {return ctx.executor().schedule(task, delay, unit);}

然后,分析销毁方法destroy():

private void destroy() {state = 2;  // 这里结合initialize对比理解if (readerIdleTimeout != null) {// 取消调度任务,并置nullreaderIdleTimeout.cancel(false);readerIdleTimeout = null;}}

可知销毁的处理也很简单,分析完初始化和销毁,再看这两个方法被调用的地方,initialize()在三个方法中被调用:

public void handlerAdded(ChannelHandlerContext ctx) throws Exception {if (ctx.channel().isActive() &&ctx.channel().isRegistered()) {initialize(ctx);} }public void channelRegistered(ChannelHandlerContext ctx) throws Exception {if (ctx.channel().isActive()) {initialize(ctx);}super.channelRegistered(ctx);}public void channelActive(ChannelHandlerContext ctx) throws Exception {initialize(ctx);super.channelActive(ctx);}

当客户端与服务端成功建立连接后,Channel被激活,此时channelActive的初始化被调用;如果Channel被激活后,动态添加此Handler,则handlerAdded的初始化被调用;如果Channel被激活,用户主动切换Channel的执行线程Executor,则channelRegistered的初始化被调用。这一部分较难理解,请仔细体会。destroy()则有两处调用:

 public void channelInactive(ChannelHandlerContext ctx) throws Exception {destroy();super.channelInactive(ctx);}public void handlerRemoved(ChannelHandlerContext ctx) throws Exception {destroy();}

即该Handler被动态删除时,handlerRemoved的销毁被执行;Channel失效时,channelInactive的销毁被执行。
分析完这些,在分析核心的调度任务ReaderIdleTimeoutTask:

private final class ReaderIdleTimeoutTask implements Runnable {private final ChannelHandlerContext ctx;ReaderIdleTimeoutTask(ChannelHandlerContext ctx) {this.ctx = ctx;}@Overrideprotected void run() {if (!ctx.channel().isOpen()) {// Channel不再有效return;}long nextDelay = readerIdleTimeNanos;if (!reading) {// nextDelay<=0 说明在设置的超时时间内没有读取数据nextDelay -= ticksInNanos() - lastReadTime;}// 隐含正在读取时,nextDelay = readerIdleTimeNanos > 0if (nextDelay <= 0) {// 超时时间已到,则再次调度该任务本身readerIdleTimeout = schedule(ctx, this, readerIdleTimeNanos, TimeUnit.NANOSECONDS);boolean first = firstReaderIdleEvent;firstReaderIdleEvent = false;try {IdleStateEvent event =newIdleStateEvent(IdleState.READER_IDLE, first);channelIdle(ctx, event); // 模板方法处理} catch (Throwable t) {ctx.fireExceptionCaught(t);}} else {// 注意此处的nextDelay值,会跟随lastReadTime刷新readerIdleTimeout = schedule(ctx, this, nextDelay, TimeUnit.NANOSECONDS);}}}

这个读超时检测任务执行的过程中又递归调用了它本身进行下一次调度,请仔细品味该种使用方法。再列出channelIdle()的代码:

 protected void channelIdle(ChannelHandlerContext ctx, IdleStateEvent evt) throws Exception {ctx.fireUserEventTriggered(evt);}

本例中,该方法将写超时事件作为用户事件传播到下一个Handler,用户需要在某个Handler中拦截该事件进行处理。该方法标记为protect说明子类通常可覆盖,ReadTimeoutHandler子类即定义了自己的处理:

@Overrideprotected final void channelIdle(ChannelHandlerContext ctx, IdleStateEvent evt)throws Exception {assert evt.state() == IdleState.READER_IDLE;readTimedOut(ctx);}protected void readTimedOut(ChannelHandlerContext ctx) throws Exception {if (!closed) {ctx.fireExceptionCaught(ReadTimeoutException.INSTANCE);ctx.close();closed = true;}}

可知在ReadTimeoutHandler中,如果发生读超时事件,将会关闭该Channel。当进行心跳处理时,使用IdleStateHandler较为麻烦,一个简便的方法是:直接继承ReadTimeoutHandler然后覆盖readTimedOut()进行用户所需的超时处理。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-xmNCsEIP-1647065341608)(https://user-gold-cdn.xitu.io/2019/2/22/16915de58b6f8285?w=300&h=390&f=png&s=14824)]

	请戳GitHub原文: https://github.com/wangzhiwubigdata/God-Of-BigData关注公众号,内推,面试,资源下载,关注更多大数据技术~大数据成神之路~预计更新500+篇文章,已经更新60+篇~ 

这篇关于Netty源码解析7-ChannelHandler实例之TimeoutHandler的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143303

相关文章

IDEA与JDK、Maven安装配置完整步骤解析

《IDEA与JDK、Maven安装配置完整步骤解析》:本文主要介绍如何安装和配置IDE(IntelliJIDEA),包括IDE的安装步骤、JDK的下载与配置、Maven的安装与配置,以及如何在I... 目录1. IDE安装步骤2.配置操作步骤3. JDK配置下载JDK配置JDK环境变量4. Maven配置下

Python中配置文件的全面解析与使用

《Python中配置文件的全面解析与使用》在Python开发中,配置文件扮演着举足轻重的角色,它们允许开发者在不修改代码的情况下调整应用程序的行为,下面我们就来看看常见Python配置文件格式的使用吧... 目录一、INI配置文件二、YAML配置文件三、jsON配置文件四、TOML配置文件五、XML配置文件

Spring中@Lazy注解的使用技巧与实例解析

《Spring中@Lazy注解的使用技巧与实例解析》@Lazy注解在Spring框架中用于延迟Bean的初始化,优化应用启动性能,它不仅适用于@Bean和@Component,还可以用于注入点,通过将... 目录一、@Lazy注解的作用(一)延迟Bean的初始化(二)与@Autowired结合使用二、实例解

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

使用Java实现一个解析CURL脚本小工具

《使用Java实现一个解析CURL脚本小工具》文章介绍了如何使用Java实现一个解析CURL脚本的工具,该工具可以将CURL脚本中的Header解析为KVMap结构,获取URL路径、请求类型,解析UR... 目录使用示例实现原理具体实现CurlParserUtilCurlEntityICurlHandler

深入解析Spring TransactionTemplate 高级用法(示例代码)

《深入解析SpringTransactionTemplate高级用法(示例代码)》TransactionTemplate是Spring框架中一个强大的工具,它允许开发者以编程方式控制事务,通过... 目录1. TransactionTemplate 的核心概念2. 核心接口和类3. TransactionT

数据库使用之union、union all、各种join的用法区别解析

《数据库使用之union、unionall、各种join的用法区别解析》:本文主要介绍SQL中的Union和UnionAll的区别,包括去重与否以及使用时的注意事项,还详细解释了Join关键字,... 目录一、Union 和Union All1、区别:2、注意点:3、具体举例二、Join关键字的区别&php