Kafka 为了避免 Full GC,竟然还在发送端设计了内存池,自己管理内存,太巧妙了...

2024-09-06 19:18

本文主要是介绍Kafka 为了避免 Full GC,竟然还在发送端设计了内存池,自己管理内存,太巧妙了...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、开篇引出一个 Full Gc 的问题

在上一篇文章中,我们讲到了 Kafka 发送消息的八个流程,并且着重讲了 Kafka 封装了一个内存结构,把每个分区的消息封装成批次,缓存到内存里。

如下图所示:

上图中,整体是一个 Map 结构,Map 的 key 是分区,Map 的值是一个队列;队列里有一个个的小批次,里面是很多消息。

这样好处就是可以一次性的把消息发送出去,不至于来一条发送一条,浪费网络资源。

但由此也带来了问题,生产者端消息这么多,一个批次发送完了就不管了去等待 JVM 的垃圾回收的时候,很有可能会触发 full gc。

一次 full gc,整个 Producer 端的所有线程就都停了,所有消息都无法发送了,由此带来的损耗也是不可小觑。

这个严重的问题,当然 Kafka 的开发者也考虑到了这一点,所以作者设计了一个内存池,用来反复利用被发送出去 RecordBatch,以减少 full gc。

二、什么是内存池

可以类比连接池,连接池缓存了很多 jdbc 连接,避免不必要的创建连接的开销;内存池也一样,可以对 RecordBatch 做到反复利用。

那我们看看 Kafka 内存池是怎么设计的:

Kafka 内存设计有两部分,下面的绿色的是可用的内存(未分配的内存,初始的时候是 32M),上面红色的是已经被分配了的内存,每个小 batch 是 16K,然后这一个个的 batch 就可以被反复利用,不需要每次都申请内存。

两部分加起来是 32M。

这个 32M 的配置在 ProducerConfig 这个类里面:

三、申请内存的过程

(发送消息的流程在上一篇文章讲过了,可以回去复习下)

我们从发送消息的大流程的第七步开始看(当前位置:KafkaProducer):

进入到 RecordAccumulator 类里,当发现还没有队列的时候,创建了一个队列,然后去申请内存(当前类位置:RecordAccumulator):

本次我们主要看的就是这个 allocate 方法。点到 allocate 里面,到了 BufferPool 类,BufferPool 是对内存池的封装。然后来一行行看这个申请内存的方法。

(1)如果申请的内存大小超过了整个缓存池的大小,则抛错出来

(2)对整个方法加锁:

this.lock.lock();

(3)如果申请的大小是每个 recordBatch 的大小(16K),并且已分配内存不为空,则直接取出来一个返回。

if (size == poolableSize && !this.free.isEmpty())return this.free.pollFirst();

(4)如果要申请的内存大小不是 16K 或者已分配内存没有了的情况。

如果整个内存池大小比要申请的内存大小大 (this.availableMemory + freeListSize >= size),则直接从可用内存(即上图绿色的区域)申请一块内存。

并且可用内存要去掉申请的那一块内存。

int freeListSize = this.free.size() * this.poolableSize;
if (this.availableMemory + freeListSize >= size) {// we have enough unallocated or pooled memory to immediately// satisfy the requestfreeUp(size);this.availableMemory -= size;lock.unlock();return ByteBuffer.allocate(size);
}

(5)下面是 else 分支,表示申请的内存大小不是 16 K,或者已分配内存区域没有,并且所有的内存加起来都不够了。

首先创建一个 Condition。Condition 就是用来替代传统的 Object 的 wait() 和 notify() 方法来实现线程间的协作。Condition 必须在 lock 和 unlock 代码块中间才可使用。

Condition moreMemory = this.lock.newCondition();

将 Condition 加入到 waiters 里面。为什么会有多个 Condition 呢?因为这里可能很多个线程都在使用生产者发送消息,可能很多个线程都没有足够的内存分配了,都在等待。

this.waiters.addLast(moreMemory);

然后线程开始睡眠,等待释放资源(唤醒条件有两个,一个是睡眠时间到了,一个是有其他线程释放了内存,被唤醒了):

(7)如果等了指定时间(默认配置是 60s - 获取元数据的时间),还没被唤醒,则直接抛一个缓存超时的异常出去

if (waitingTimeElapsed) {this.waiters.remove(moreMemory);throw new TimeoutException("Failed to allocate memory within the configured max blocking time " + maxTimeToBlockMs + " ms.");
}

(8)如果有其他线程释放内存,被唤醒了,从 waiters 列表里面移除自己,然后去看看有没有内存可以用。

这里仍然有两个分支,一个是首先看已分配内存里面有没有内存(16K),如果有的话,直接拿一个 batch 出来

if (accumulated == 0 && size == this.poolableSize && !this.free.isEmpty()) {// just grab a buffer from the free listbuffer = this.free.pollFirst();accumulated = size;
}

另一个分支是,如果要申请的不是 16K,或者已分配内存空间不是空的

// 从已分配内存取一个出来放到可用内存区域
freeUp(size - accumulated);
// 申请一块,有可能只能申请到2K
int got = (int) Math.min(size - accumulated, this.availableMemory);
// 做扣减
this.availableMemory -= got;
accumulated += got;

有可能这里只能申请到一部分内存,比如3K,5K,没有达到想申请的那个数量,则会继续走 while 循环。

(9)最后发现内存有富余,则唤醒其他线程

if (this.availableMemory > 0 || !this.free.isEmpty()) {if (!this.waiters.isEmpty())this.waiters.peekFirst().signal();
}

四、释放内存的过程

释放内存的过程很简单了,如果释放的是一个批次的大小(16K),则直接加到已分配内存里面

如果没有,则把内存放到可用内存里面,这部分内存等待虚拟机垃圾回收。

public void deallocate(ByteBuffer buffer, int size) {lock.lock();try {if (size == this.poolableSize && size == buffer.capacity()) {buffer.clear();this.free.add(buffer);} else {this.availableMemory += size;}Condition moreMem = this.waiters.peekFirst();if (moreMem != null)moreMem.signal();} finally {lock.unlock();}
}

这里可能会有一个疑问:

为什么释放了一个批次大小(16K)内存的时候,才放到已分配内存里面。我想释放个 1M 的内存,为什么不能往已分配内存里面呢?

假设我们往已分配内存里释放了个 1M 的批次到内存里。

然后发送消息其实是有条件的,要么是许多消息把批次撑满了发送出去,要么是一个批次累积消息的时间到了,就会立马发出去。

如果是一个 1M 的内存批次,才攒了几条消息,一个批次才用了 几十K,时间到了,就把这个 1M 的内存批次发送出去了。

那么可想而知,内存的使用率是会非常低的。

所以这里控制了,已分配内存必须是 16K 的,每个批次的大小必须一致,这样才能充分利用内存空间。

五、总结

本文我们讨论了 Kafka 生产者端设计了一个内存池的结构,反复利用每一个批次,减少 Java 虚拟机的内存回收。

本文中,还涉及到了一个高并发锁的代码,比如 可重入锁 ReentrantLock,Condition,如果有不明白的地方,可以把这部分复习一下,再看这段代码就很容易明白了。

这篇关于Kafka 为了避免 Full GC,竟然还在发送端设计了内存池,自己管理内存,太巧妙了...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1142884

相关文章

在Spring Boot中浅尝内存泄漏的实战记录

《在SpringBoot中浅尝内存泄漏的实战记录》本文给大家分享在SpringBoot中浅尝内存泄漏的实战记录,结合实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录使用静态集合持有对象引用,阻止GC回收关键点:可执行代码:验证:1,运行程序(启动时添加JVM参数限制堆大小):2,访问 htt

python uv包管理小结

《pythonuv包管理小结》uv是一个高性能的Python包管理工具,它不仅能够高效地处理包管理和依赖解析,还提供了对Python版本管理的支持,本文主要介绍了pythonuv包管理小结,具有一... 目录安装 uv使用 uv 管理 python 版本安装指定版本的 Python查看已安装的 Python

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

深入理解Apache Kafka(分布式流处理平台)

《深入理解ApacheKafka(分布式流处理平台)》ApacheKafka作为现代分布式系统中的核心中间件,为构建高吞吐量、低延迟的数据管道提供了强大支持,本文将深入探讨Kafka的核心概念、架构... 目录引言一、Apache Kafka概述1.1 什么是Kafka?1.2 Kafka的核心概念二、Ka

Java Optional避免空指针异常的实现

《JavaOptional避免空指针异常的实现》空指针异常一直是困扰开发者的常见问题之一,本文主要介绍了JavaOptional避免空指针异常的实现,帮助开发者编写更健壮、可读性更高的代码,减少因... 目录一、Optional 概述二、Optional 的创建三、Optional 的常用方法四、Optio

基于Python和MoviePy实现照片管理和视频合成工具

《基于Python和MoviePy实现照片管理和视频合成工具》在这篇博客中,我们将详细剖析一个基于Python的图形界面应用程序,该程序使用wxPython构建用户界面,并结合MoviePy、Pill... 目录引言项目概述代码结构分析1. 导入和依赖2. 主类:PhotoManager初始化方法:__in

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

nvm如何切换与管理node版本

《nvm如何切换与管理node版本》:本文主要介绍nvm如何切换与管理node版本问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录nvm切换与管理node版本nvm安装nvm常用命令总结nvm切换与管理node版本nvm适用于多项目同时开发,然后项目适配no

如何使用C#串口通讯实现数据的发送和接收

《如何使用C#串口通讯实现数据的发送和接收》本文详细介绍了如何使用C#实现基于串口通讯的数据发送和接收,通过SerialPort类,我们可以轻松实现串口通讯,并结合事件机制实现数据的传递和处理,感兴趣... 目录1. 概述2. 关键技术点2.1 SerialPort类2.2 异步接收数据2.3 数据解析2.

一文详解kafka开启kerberos认证的完整步骤

《一文详解kafka开启kerberos认证的完整步骤》这篇文章主要为大家详细介绍了kafka开启kerberos认证的完整步骤,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、kerberos安装部署二、准备机器三、Kerberos Server 安装1、配置krb5.con