编程技巧--位运算的巧妙运用(1)

2024-09-06 15:18

本文主要是介绍编程技巧--位运算的巧妙运用(1),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


 作者:yunyu5120

 

             这是我的这一系列文章的第一篇,主要讲述我学习过程中积累的一些编程技巧,由于我也是一个初学者,高手莫笑。这一篇主要讲解位运算的基础知识鱼与其简单应用,我主要以C/C++语言讲述,其他语言可以类推。如果你已经对位运算基础和应用十分熟悉,那么本文并不适合你。

             我相信还是有一部分人对位运算还不是很了解,我希望你在看了本博文之后能对位运算有深刻的了解,并运能够用自如,能够体会到编程的乐趣。

            “写程序,位运算是必要的吗?”

             这个问题问的好,其实位运算并不是必要的,有什多方法可以可以代替位运算,但是位运算其特有的对程序的优化特点是无法替代的!当然如果你在写Windows应用程序,其中调用的一些Windows APi 你就必须用到位运算,如最简单的MessageBox。当然其中牵扯到的位运算过于简单,就是简单的或运算。想想当初写的第一个windows程序用到MessageBox竟然出现了一个windows窗口,而不是那黑糊糊的Console,让我兴奋了还一段时间!可是当时的我也不知道这里面牵扯的很多知识,甚至什么是API都不知道!

             我们在学习C/C++的时候书本上对位运算的相关知识讲得很少,就是简单的“或与非”。如果你的记性好那么你还会记得在位运算中还有一个运算叫做 “异或”运算和移位运算。不知道你现在对位运算的基础是否还清楚,我在这里假设我们都忘了位运算的基础,所以下面我们对位运算进行复习一下。

            

C/C++语言提供的位运算符有:

运算符 含义 功能
& 按位与 如果两个相应的二进制位都为1,则该位的结果值为1;否则为0。
| 按位或 两个相应的二进制位中只要有一个为1,该位的结果值为1。
按位异或 若参加运算的两个二进制位同号则结果为0(假)异号则结果为1(真)
取反 ~是一个单目(元)运算符,用来对一个二进制数按位取反,即将0变1,将1变0。
<< 左移 左移运算符是用来将一个数的各二进制位全部左移N位,右补0。
>> 右移 表示将a的各二进制位右移N位,移到右端的低位被舍弃,对无符号数,高位补0。

位运算的结果演示:

位运算或 “|” or与 “&”and非 “~” not异或 “^” xor
操作数101010101110101011010101010000001
操作数20010101010101010(无)01111111
也能算结果01111111100000000101010111111110

      

               好了看了上面的两个表格,相信你已经对位运算有所了解了,那么接下来,我们就来讲讲位运算的应用。

 

1、  用于整数的奇偶性判断

               想想,我们要判断一个数的奇偶性,在没用位运算之前我们可以用下列的代码来实现:

 

[cpp] view plain copy
print ?
  1. template<class Type>  
  2. bool Parity(Type value)  
  3. {  
  4.     if(value % 2 == 0)  
  5.         return false;  
  6.     else  
  7.         return true;  
  8. }  
  9. //加以优化   
  10. template<class Type>  
  11. inline bool Parity(Type value)  
  12. {  
  13.     return (value % 2 != 0);  
  14. }  
template<class Type>
bool Parity(Type value)
{if(value % 2 == 0)return false;elsereturn true;
}
//加以优化 
template<class Type>
inline bool Parity(Type value)
{return (value % 2 != 0);
}



 

             要知道,上面的代码我们使用的是对2取余,如果操作数value是小数的话,还勉强行得通,但是value是一个上百万的大数,那么这就白白浪费了CPU的大量时间,程序的效率和性能就很差。我们知道任何数在计算机储存中都是以二进制储存的,细心的你就会发现在二进制的最小一位有个特点,为0就是偶数,为1就是奇数,按照这个原理我们根本没必要让我们的CPU大哥白白做那么多的工作,只要一步判断就可以了。接下来就让我们看看位运算的精妙之处!

             那么我们的目的就是判断最小位是0还是1,可是我们怎么判断呢?我们要用位运算阿里判断,就是与或非。在上面的复习之中我们只说了位运算的计算方法,并没有说其用处。那么在这里我们用到的就是“与”!与运算特有的一个功能就是判断指定位上的值(0或1)。我们来看下面的表格(与运算)。

操作数110101010010101011111111111111110
操作数200000001000000010000000100000001
运算结果00000000000000010000000100000000

            我们要注意一下这里的 操作数2 ,它只有最低位是1,其余位都是0,这就是关键所在,操作数1是随机值。我们看看结果只会有两种结果:0或1。这个结果就取决于操作数1的最低位,它为1时就为1,为0时就为0.

            “那么我要判断的是第二位呢?”

            好!那我们就把操作数2改为 00000010 那么结果就只会有 00000000 或 00000010 其结果取决于第二位。

            有了这个基础那么我们来看看怎么用位运算判断奇偶性吧:
 

[cpp] view plain copy
print ?
  1. template<class Type>  
  2. bool Parity(Type value)  
  3. {  
  4.     if(value & 0x0001 == 0)  
  5.         return false;  
  6.     else  
  7.         return true;  
  8. }  
  9. //加以优化   
  10. template<class Type>  
  11. inline bool Parity(Type value)  
  12. {  
  13.     return (value & 1 != 0);  
  14. }  
  15. //在简化   
  16. #define PARITY(value) (value&1)  
template<class Type>
bool Parity(Type value)
{if(value & 0x0001 == 0)return false;elsereturn true;
}
//加以优化 
template<class Type>
inline bool Parity(Type value)
{return (value & 1 != 0);
}
//在简化 
#define	PARITY(value) (value&1)


 

                    使用a%2来判断奇偶性和a & 1是一样的作用,但是a & 1要快好多。

 

2、  判断n是否是2的整数冪

 

                所谓2的整数冪就是指 1(2的0次冪),2,4,8,16,32,64,128,256,512,1024,2048.............等数字,若何判断一个数是否是这样的数呢?我们看看不用位运算的计算方法:

 

[cpp] view plain copy
print ?
  1. #include "math.h"   
  2.   
  3. template<class Type>  
  4. bool IsPowerOfTwo(Type value)  
  5. {  
  6.     for(int i = 0,l = 8*sizeof(value); i < l ;i++)  
  7.     {  
  8.         if(pow(2,i) == value)  
  9.         {  
  10.             return true;  
  11.         }  
  12.     }   
  13.     return false;  
  14. }  
#include "math.h" template<class Type>
bool IsPowerOfTwo(Type value)
{for(int i = 0,l = 8*sizeof(value); i < l ;i++){if(pow(2,i) == value){return true;}} return false;
}


 

             在这个算法中,我们使用了一个循环。其原理非常简单就是一一的对比,但是其中还调用了数学函数库,效率大大降低。接下来我们讲讲怎样用位运算来判断。我们首先要研究一下这些数的特性,请看下表(与运算):

2的幂8163264
n00001000000100000010000001000000
n-100000111000011110001111100111111
与结果00000000000000000000000000000000

            我们发现 n &(n-1) =  0  我们可以 用逻辑非  !(n&(n-1)) =  1 。那是不是这样就可以了呢,你会发现 !(0&(0-1)) =  1 但是 0并不是 2的正整数冪。我们可以用 逻辑与 (!(n&(n-1) &&  n) = 1;请看下面的代码:

 

[cpp] view plain copy
print ?
  1. template<class Type>  
  2. inline bool IsPowerOfTwo(Type n)  
  3. {  
  4.     if(((!(n&(n-1))) && n) == 1)  
  5.         return true;  
  6.     else  
  7.         return false;  
  8. }  
  9. //简化   
  10. #define ISPOWEROFTWO(n) ((!(n&(n-1)) ) && n)  
template<class Type>
inline bool IsPowerOfTwo(Type n)
{if(((!(n&(n-1))) && n) == 1)return true;elsereturn false;
}
//简化 
#define	ISPOWEROFTWO(n) ((!(n&(n-1)) ) && n)


 

 

3、  统计n在二进制中1的个数

 

             朴素的统计办法是:先判断n的奇偶性,为奇数时计数器增加1,然后将n右移一位,重复上面步骤,直到移位完毕。

 

[cpp] view plain copy
print ?
  1. template<class Type>  
  2. inline bool Parity(Type value)  
  3. {  
  4.     return (value % 2 != 0);  
  5. }  
  6.   
  7. template<class Type>  
  8. inline int CountOne(Type value)  
  9. {  
  10.     if(value != 0)  
  11.     {  
  12.         return Parity(value) + CountOne(value >> 1);  
  13.     }  
  14.     return 0;  
  15. }  
template<class Type>
inline bool Parity(Type value)
{return (value % 2 != 0);
}template<class Type>
inline int CountOne(Type value)
{if(value != 0){return Parity(value) + CountOne(value >> 1);}return 0;
}



 

             朴素的统计办法是比较简单的,那么我们来看看比较高级的办法。

 

              举例说明,

                      考虑2位整数 n=11(十进制为3),里边有2个1,先提取里边的偶数位10,奇数位01,把偶数位右移1位,然后与奇数位相加,因为每对奇偶位相加的和不会超过“两位”,所以结果中每两位保存着数n中1的个数,那么把 n 计算之后得到的值为:(10>>1)+01 = 01 + 01 = 10, 把10换成十进制就是 2,2就代表 n(3)=11 中有两个1!

                     相应的如果n是四位整数 n=0111(十进制7),先以“一位”为单位做奇偶位提取:偶数位 0010,奇数位0101。然后偶数位移位(右移1位)再相加:(0010>>1)+0101=0110;再用0110以“两位”为单位做奇偶提取:偶数为0100,奇数位0010。偶数位移位(这时就需要移2位)再相加:(0100>>2)+0010=0011,因为此时每对奇偶位的和不会超过“四位”,所以结果中保存着n中1的个数:(0100>>2)+0010=0011 把0011换成十进制就是3,3就是n(7)=0111中有3个1。

                     依次类推可以得出更多位n的算法。整个思想类似分治法。

  
在这里就顺便说一下常用的二进制数:

二进制数二进制值用处
0xAAAAAAAA10101010101010101010101010101010偶数位为1,以1位为单位提取奇位
0x5555555501010101010101010101010101010101奇数位为1,以1位为单位提取偶位
0xCCCCCCCC11001100110011001100110011001100以“2位”为单位提取奇位
0x3333333300110011001100110011001100110011以“2位”为单位提取偶位
0xF0F0F0F011110000111100001111000011110000以“8位”为单位提取奇位
0x0F0F0F0F00001111000011110000111100001111以“8位”为单位提取偶位
0xFFFF000011111111111111110000000000000000以“16位”为单位提取奇位
0x0000FFFF00000000000000001111111111111111以“16位”为单位提取偶位

    

例如:32位无符 号数的1的个数可以这样数:

 

[cpp] view plain copy
print ?
  1. int CountOne(unsigned int n)  
  2. {  
  3.     //0xAAAAAAAA,0x55555555分别是以“1位”为单位提取奇偶位  
  4.     n = ((n & 0xAAAAAAAA) >> 1) + (n & 0x55555555);  
  5.     //0xCCCCCCCC,0x33333333分别是以“2位”为单位提取奇偶位  
  6.     n = ((n & 0xCCCCCCCC) >> 2) + (n & 0x33333333);  
  7.     //0xF0F0F0F0,0x0F0F0F0F分别是以“4位”为单位提取奇偶位  
  8.     n = ((n & 0xF0F0F0F0) >> 4) + (n & 0x0F0F0F0F);  
  9.     //0xFF00FF00,0x00FF00FF分别是以“8位”为单位提取奇偶位  
  10.     n = ((n & 0xFF00FF00) >> 8) + (n & 0x00FF00FF);  
  11.     //0xFFFF0000,0x0000FFFF分别是以“16位”为单位提取奇偶位  
  12.     n = ((n & 0xFFFF0000) >> 16) + (n & 0x0000FFFF);  
  13.   
  14.     return n;  
  15. }  
int CountOne(unsigned int n)
{//0xAAAAAAAA,0x55555555分别是以“1位”为单位提取奇偶位n = ((n & 0xAAAAAAAA) >> 1) + (n & 0x55555555);//0xCCCCCCCC,0x33333333分别是以“2位”为单位提取奇偶位n = ((n & 0xCCCCCCCC) >> 2) + (n & 0x33333333);//0xF0F0F0F0,0x0F0F0F0F分别是以“4位”为单位提取奇偶位n = ((n & 0xF0F0F0F0) >> 4) + (n & 0x0F0F0F0F);//0xFF00FF00,0x00FF00FF分别是以“8位”为单位提取奇偶位n = ((n & 0xFF00FF00) >> 8) + (n & 0x00FF00FF);//0xFFFF0000,0x0000FFFF分别是以“16位”为单位提取奇偶位n = ((n & 0xFFFF0000) >> 16) + (n & 0x0000FFFF);return n;
}


 

                    

                    看起来似乎采用位运算的代码比朴素方法代码要复杂的多,但是在性能上有着朴素方法无法比拟的优越性,只要四步简单的运算就能达到目的,而朴素方法不是用循环就是递归,这大大降低了CPU的运算性能。

 

  

4、对于正整数的模运算(注意,负数不能这么算)

先说下比较简单的:

乘除法是很消耗时间的,只要对数左移一位就是乘以2,右移一位就是除以2,据说用位运算效率提高了60%。

乘2^k 众所周知: n<<k。所以你以后还会傻傻地去敲2566*4的结果10264吗?直接2566<<2就搞定了,又快又准确。

除2^k众所周知: n>>k。

那么 mod 2^k 呢?(对2的倍数取模)

n&((1<<k)-1)

用通俗的言语来描述就是,对2的倍数取模,只要将数与2的倍数-1做按位与运算即可。

好!方便理解就举个例子吧。

思考:如果结果是要求模2^k时,我们真的需要每次都取模吗?

在此很容易让人想到快速幂取模法。

快速幂取模算法

经常做题目的时候会遇到要计算 a^b mod c 的情况,这时候,一个不小心就TLE(算法计算超时,ACM题目测试结果常见问题)了。那么如何解决这个问题呢?位运算来帮你吧。

 

首先介绍一下秦九韶算法:(数值分析讲得很清楚)

把一个n次多项式f(x) = a[n]x^n+a[n-1]x^(n-1)+......+a[1]x+a[0]改写成如下形式:

  f(x) = a[n]x^n+a[n-1]x^(n-1))+......+a[1]x+a[0]

  = (a[n]x^(n-1)+a[n-1]x^(n-2)+......+a[1])x+a[0]

  = ((a[n]x^(n-2)+a[n-1]x^(n-3)+......+a[2])x+a[1])x+a[0]

  =. .....

  = (......((a[n]x+a[n-1])x+a[n-2])x+......+a[1])x+a[0].

  求多项式的值时,首先计算最内层括号内一次多项式的值,即

  v[1]=a[n]x+a[n-1]

  然后由内向外逐层计算一次多项式的值,即

  v[2]=v[1]x+a[n-2]

  v[3]=v[2]x+a[n-3]

  ......

  v[n]=v[n-1]x+a[0]

这样,求n次多项式f(x)的值就转化为求n个一次多项式的值。

好!有了前面的基础知识,我们开始解决问题吧

由(a × b) mod c=( (a mod c) × b) mod c.

我们可以将 b先表示成就:

  b = a[t] × 2^t + a[t-1]× 2^(t-1) + …… + a[0] × 2^0.  (a[i]=[0,1]).

这样我们由 a^b  mod  c = (a^(a[t] × 2^t  +  a[t-1] × 2^(t-1) + …a[0] × 2^0) mod c.

然而我们求  a^( 2^(i+1) ) mod c=( (a^(2^i)) mod c)^2 mod c .求得。

具体实现如下:

使用秦九韶算法思想进行快速幂模算法,简洁漂亮

// 快速计算 (a ^ p) % m 的值
[cpp] view plain copy
print ?
  1. __int64 FastM(__int64 a, __int64 p, __int64 m)  
  2. {   
  3.     if (p == 0) return 1;  
  4.     __int64  r = a % m;  
  5.     __int64  k = 1;  
  6.     while (p > 1)  
  7.     {  
  8.         if ((p & 1)!=0)  
  9.         {  
  10.             k = (k * r) % m;   
  11.         }  
  12.         r = (r * r) % m;  
  13.         p >>= 1;  
  14.     }  
  15.     return (r * k) % m;  
  16. }  
__int64 FastM(__int64 a, __int64 p, __int64 m)
{ if (p == 0) return 1;__int64  r = a % m;__int64  k = 1;while (p > 1){if ((p & 1)!=0){k = (k * r) % m; }r = (r * r) % m;p >>= 1;}return (r * k) % m;
}

 http://acm.pku.edu.cn/JudgeOnline/problem?id=3070

 

5、计算掩码

什么是掩码?掩码是一串二进制代码对目标字段进行位与运算,屏蔽当前的输入位。用于从一个或多个字节中选出的位的集合。

举个例子:

我们有一个IP地址:192.168.1.111 对应二进制:11000000.10101000.00000001.01101111。

我们让这个IP位与:255.255.255.0 对应二进制:11111111.11111111.11111111.00000000

可以得到子网地址:192.168.1.0     对应二进制:11000000.10101000.00000001.00000000

在例子中我们通过观察二进制码就知道,这个过程就是拿到IP的前三个字节的数据信息,这里用到的255.255.255.0就是掩码,也就是我们常说的子网掩码。通过子网掩码可以轻松的得到子网地址。那么通过掩码我们就可以轻松的得到多个字节中指定的位的集合。


我们现在有一个需求:获得数x的低n位的集合。

假设 x = 233 n= 6,我们就知道计算方法:233的二进制是 11101001,所以结果集为 11101001&00111111 =00101001 十进制为 41。在这个计算中233可以轻易改变,但是 00111111 已经指定 n = 6,要可以让n也随意改变怎么办呢?

我们用位运算的思维就可以得到 n = 6 时 00111111 可以表示为 (1 << 6) - 1 

那么掩码的计算公式就为:(1 << n) - 1 


现在根据需求可以写出模版函数如下:

[cpp] view plain copy
print ?
  1. template<class Type>  
  2. inline Type LowByte(Type x, int n)  
  3. {  
  4.     return x & ((1 << n) - 1);  
  5. }  
  6. //简化   
  7. #define LOWBYTE(x,n) x & ((x << n) - 1)  
template<class Type>
inline Type LowByte(Type x, int n)
{return x & ((1 << n) - 1);
}
//简化 
#define	LOWBYTE(x,n) x & ((x << n) - 1)

如果是高位集合呢?我们只需要把掩码左移就可以了:n = 6 时 00111111<<2  公式为:((1 << 6) - 1)<<2

[cpp] view plain copy
print ?
  1. template<class Type>    
  2. inline Type HeightByte(Type x, int n)    
  3. {    
  4.     return x & (((1 << n) - 1) << (sizeof(x)-n));    
  5. }    
  6. //简化    
  7. #define HEIGHTBYTE(x,n) x & (((1 << n) - 1) << (sizeof(x)-n))  
template<class Type>  
inline Type HeightByte(Type x, int n)  
{  return x & (((1 << n) - 1) << (sizeof(x)-n));  
}  
//简化  
#define HEIGHTBYTE(x,n) x & (((1 << n) - 1) << (sizeof(x)-n))


6、子集

假设我们有一个集合 mask ={‘c’,‘b’,‘a’},要求列出集合的所有子集。我们可以使用位运算思想,把集合的元素的有无看成二进制的0和1那么我们展开举例:

        {‘c’,‘b’,‘a’}

            0     0     1                1                      {‘a’}

            0     1     0                2                      {‘b’}

            0     1     1                3                      {‘b’,‘a’}

                  ...                      ...                          ...

            1     1     1                7                      {‘c’,‘b’,‘a’}

              二进制                十进制                   对应子集

  枚举出一个集合的子集。设原集合为mask,则下面的代码就可以列出它的所有子集: 

  for (i = mask ; i ; i = (i - 1) & mask) ; 

  很漂很漂亮吧。

这篇关于编程技巧--位运算的巧妙运用(1)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1142366

相关文章

怎么关闭Ubuntu无人值守升级? Ubuntu禁止自动更新的技巧

《怎么关闭Ubuntu无人值守升级?Ubuntu禁止自动更新的技巧》UbuntuLinux系统禁止自动更新的时候,提示“无人值守升级在关机期间,请不要关闭计算机进程”,该怎么解决这个问题?详细请看... 本教程教你如何处理无人值守的升级,即 Ubuntu linux 的自动系统更新。来源:https://

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

Java 枚举的常用技巧汇总

《Java枚举的常用技巧汇总》在Java中,枚举类型是一种特殊的数据类型,允许定义一组固定的常量,默认情况下,toString方法返回枚举常量的名称,本文提供了一个完整的代码示例,展示了如何在Jav... 目录一、枚举的基本概念1. 什么是枚举?2. 基本枚举示例3. 枚举的优势二、枚举的高级用法1. 枚举

不删数据还能合并磁盘? 让电脑C盘D盘合并并保留数据的技巧

《不删数据还能合并磁盘?让电脑C盘D盘合并并保留数据的技巧》在Windows操作系统中,合并C盘和D盘是一个相对复杂的任务,尤其是当你不希望删除其中的数据时,幸运的是,有几种方法可以实现这一目标且在... 在电脑生产时,制造商常为C盘分配较小的磁盘空间,以确保软件在运行过程中不会出现磁盘空间不足的问题。但在

Python中列表的高级索引技巧分享

《Python中列表的高级索引技巧分享》列表是Python中最常用的数据结构之一,它允许你存储多个元素,并且可以通过索引来访问这些元素,本文将带你深入了解Python列表的高级索引技巧,希望对... 目录1.基本索引2.切片3.负数索引切片4.步长5.多维列表6.列表解析7.切片赋值8.删除元素9.反转列表

C#反射编程之GetConstructor()方法解读

《C#反射编程之GetConstructor()方法解读》C#中Type类的GetConstructor()方法用于获取指定类型的构造函数,该方法有多个重载版本,可以根据不同的参数获取不同特性的构造函... 目录C# GetConstructor()方法有4个重载以GetConstructor(Type[]

Python中处理NaN值的技巧分享

《Python中处理NaN值的技巧分享》在数据科学和数据分析领域,NaN(NotaNumber)是一个常见的概念,它表示一个缺失或未定义的数值,在Python中,尤其是在使用pandas库处理数据时,... 目录NaN 值的来源和影响使用 pandas 的 isna()和 isnull()函数直接比较 Na

Oracle数据库执行计划的查看与分析技巧

《Oracle数据库执行计划的查看与分析技巧》在Oracle数据库中,执行计划能够帮助我们深入了解SQL语句在数据库内部的执行细节,进而优化查询性能、提升系统效率,执行计划是Oracle数据库优化器为... 目录一、什么是执行计划二、查看执行计划的方法(一)使用 EXPLAIN PLAN 命令(二)通过 S

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi