rust 命令行工具rsup管理前端npm依赖

2024-09-06 13:20

本文主要是介绍rust 命令行工具rsup管理前端npm依赖,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

学习了一年的 rust 了,但是不知道用来做些什么,也没能赋能到工作中,现在前端基建都已经开始全面进入 rust 领域了,rust 的前端生态是越来越好。但是自己奈何水平不够,想贡献点什么,无从下手。

遂想自己捣鼓个什么东西,可以帮助到日常工作的。

记录一下在完成功能时遇到的一些问题,以及是怎么解决的。

解决的需求

公司有很多项目,都是依赖公司技术部门的一个框架,虽然说不行,但还是要用,里面有一些基础业务功能,也是避免了重复。公司框架的依赖常常更新不及时,依赖安装经常会报错,比如经常要使用--legacy-peer-deps,对于新项目使用框架创建项目后还需要二次调整。

但随着时间的推移,项目越来越多,依赖也会慢慢变成旧版本,一个一个查看升级实属是一个体力活。那就写个脚本吧,它能做什么:

  1. 解析package.json 文件,获取到dependencies/devDependencies依赖列表。
  2. 远程请求依赖包,获取依赖的版本信息,并从中过滤出当前版本的最新版本信息
  3. 通过 web 页面展示这些数据,并通过 tag 表示版本。
  4. 选择性升级或者批量升级依赖到最新版本。

使用

  1. 直接下载并安装

github 下载地址

gitee 下载地址

解压文件,使用解压工具解压,或者使用命令行工具解压,得到一个可以执行文件。

$> tar -xzvf rsup.tar.gz

在终端将执行文件移动到/usr/local/bin目录下,使得rsup命令全局可用。或者直接在解压后的文件夹中执行。

$> sudo mv rsup /usr/local/bin/
  1. 使用安装脚本安装

在终端执行命令

# github
$> curl -fsSL https://github.com/ngd-b/rsup/raw/main/install.sh | bash# gitee
$> curl -fsSL https://gitee.com/hboot/rsup/raw/master/install.sh | bash

提示安装成功后,就可以在终端执行rsup命令。必须是当前目录下存在package.json文件或者通过参数设置绝对路径rsup -d $path

执行效果,展示项目下的依赖版本、最新版本;可以点击操作进行升级。
请添加图片描述

如何设计

命令行工具分为三个功能包:

  • core 主程序执行入口,根据参数执行不同的功能
  • pkg 解析指定目录下的package.json文件,获取依赖列表并远程请求依赖包信息,过滤出最新版本信息。
  • web 提供 web 页面展示数据,并提供升级功能。通过 websocket 实现数据交互。

为了各个子包之间的工作互不影响我们开启线程去处理异步任务,并通过channel实现线程之间的信息交互。

使用tokio 实现异步任务,就不开启线程了,因为我们每个功能都是异步任务,开启线程没必要。还需要去处理线程调用异步任务时需要异步运行时呢。

为了保持主线程的活跃性,我们将 web 服务运行在主线程中,通过tokio::task::spawn 开启异步任务,当然了我们是不需要任务阻塞主线程的。

使用到的主要 crate 以及其能力,具体可查看文档。包括但不限于:

  • clap 解析命令行参数
  • reqwest 处理网络请求
  • serde \ serde_derive \ serde_json 结构体数据序列化与反序列化
  • tokio 异步运行时
  • actix-web 提供 web 服务
  • actix-ws 实现 websocket 通信
  • actix_cors actix-web 中间键,设置 web 服务的响应头信息,设置跨域
  • actix_files 提供静态文件服务
  • futures_util 处理异步任务扩展库

遇到的问题

大致包括数据共享、传递。websocket 数据通信。结构体定义、数据序列化与反序列化。

使用clap 处理命令行参数

我们有多个子命令,在执行命令时通过指定某个子命令来执行不同的功能,比如cargo run --bin core pkg,就是指定执行pkg子命令。

可以通过clap提供的#[command(subcommand)] 属性来定义子命令。

#[derive(Parser, Debug)]
#[command(name = "rsup", author, version, about)]
struct Cli {#[command(subcommand)]command: Commands
}
#[derive(Subcommand, Debug)]
enum Commands {Pkg(pkg::Args),
}

然后在解析参数时,通过match 匹配子命令,执行不同的功能。并且针对于子命令的参数也可以被解析。

#[tokio::main]
async fn main() {let args = Cli::parse();// ... 省略其他代码match args.command {Commands::Pkg(args) => {let data_clone = data.clone();let tx_clone = tx.clone();task::spawn(async move {if let Err(e) = pkg::run(args, data_clone, tx_clone).await {println!("Error run subcommand pgk  {}", e);};});}}
}

后来我需要默认执行该子命令pkg,不需要在运行时指定子命令,只需要在运行时指定参数即可。但是每一个子包如pkg都有自己需要接收的参数,但是我们执行的是core包,所以需要处理合并各个子包的参数。

通过clap提供的#[flatten] 属性,去合并各个子命令的参数。

#[derive(Parser, Debug)]
#[command(name = "rsup", author, version, about)]
struct Cli {#[clap(flatten)]pkg_args: pkg::Args,
}#[tokio::main]
async fn main() {let args = Cli::parse();// ... 省略其他代码// 默认启动pkg解析服务let data_clone = data.clone();let tx_clone = tx.clone();task::spawn(async move {if let Err(e) = pkg::run(args.pkg_args, data_clone, tx_clone).await {println!("Error run subcommand pgk  {}", e);};});
}

使用Arc<Mutex<>>共享数据

在文章中rust 自动化测试、迭代器与闭包、智能指针、无畏并发 中提到过使用Arc<Mutex<>>共享数据。

文章里使用的是std::sync::Mutex也就是标准库提供的Mutext<>, 它是同步阻塞的,在阻塞式代码中更加高效,而我们的项目需要异步非阻塞,所以我们需要使用tokio::sync::Mutex来更好的处理异步代码。

我们在主包中定义共享数据,然后克隆引用传递给各个子包。

#[tokio::main]
async fn main() {// ... 省略其他代码let data: Arc<Mutex<pkg::Pkg>> = Arc::new(Mutex::new(pkg::Pkg::new()));
}

数据结构是在子包pkg中定义的,因为所有的数据操作、包括更新都在pkg中完成。通过clone()方法将数据传递给各个子包。我们的web子包主要是将数据传递给页面。

mpsc::channel创建通信通道

在解析pkg获取到package.json文件后,数据就需要去更新,并且需要通知web子包数据变更要向前端页面发送数据了。

在上面的文章 👆 也给出了如何在线程间传递信息。里面使用的std::sync::mpsc同样的,我们的任务是 I/O 密集型,使用异步编程更高效。我们采用了tokio::sync::mpsc

tokio::sync::mpsc 和标准库不同的是需要设置容量,防止数据溢出。通信通道是多生产者单消费者,web 服务就是消费者,它接收到数据更新消息后就像前端发送数据,而pkg子包就是生产者,负责更新数据。

#[tokio::main]
async fn main() {// ... 省略其他代码let (tx, rx) = channel(100);// web 服务 将rx 传递给 web 子包let _ = web::run(data.clone(), rx).await;
}

因为我们单数据对象、单数据源,所以不会发生数据锁死的情况,因为每次更新整个数据都会全部锁定,然后去做的更新。一旦我们的业务出现多数据源,互相依赖时就需要认真考虑锁的粒度,一旦数据全锁,其他数据有依赖时需要读取更新就会等待造成阻塞。

使用serde 、 serde_json序列化与反序列化

通过网络请求或者直接读取的package.json都是返回的 json 格式的数据,我们需要将数据反序列化成我们需要的结构体。

{"id": "","name": ""
}

通过serde_derive#[derive(Deserialize, Serialize)] 属性,可以很方便的将 json 数据反序列化成结构体。

#[derive(Debug, Serialize, Deserialize, Clone)]
pub struct PkgJson {// ... 省略其他字段
}

我们读取的package.json,直接使用serde_json::from_reader()进行反序列化。

pub fn read_pkg_json<P: AsRef<Path>>(path: P,
) -> Result<PkgJson, Box<dyn std::error::Error + Send + Sync>> {let file = File::open(path)?;let reader = BufReader::new(file);let package = serde_json::from_reader(reader)?;Ok(package)
}

通过网络读取的依赖包信息,通过使用serde_json::from_str()进行反序列化。

pub async fn fetch_pkg_info(client: &Client,pkg_name: &str,
) -> Result<PkgInfo, Box<dyn std::error::Error>> {// ... 省略其他代码if res.status().is_success() {let body = res.text().await?;let info: PkgInfo = serde_json::from_str(&body)?;Ok(info)} else {// ... 省略错误处理代码}
}

如何进行序列化操作呢,我们在接收到数据更新后,需要将数据序列化成 json 格式发送给前端页面。

通过serde_json::json 宏函数json!()将结构体序列化成 json 格式。

可以直接通过serde_json::to_string() 将 json 数据转为 json 字符串发送给前端。

// ... 省略其他代码
pub async fn send_message(&self, mut session: Session) {let locked_data = self.data.lock().await;if let Err(e) = session.text(serde_json::to_string(&locked_data.clone()).unwrap()).await{eprintln!("Failed to send message to client: {:?}", e);}
}

为了符合 rust 的字段命名风格,我们需要将一些驼峰式的命名转换成下划线命名。通过 #[serde(rename = "devDependencies")]属性定义

#[derive(Debug, Serialize, Deserialize, Clone)]
pub struct PkgJson {// ... 省略其他字段#[serde(rename = "devDependencies")]pub dev_dependencies: Option<HashMap<String, String>>,
}

除了反序列化给定的数据为结构体,我们可能还需要自定义数据字段,这时如果转换的数据里没有这个字段,我们就需要给它默认值。通过使用#[serde(default)]属性定义该字段取默认值,我们需要为这个结构体实现Default trait。

#[derive(Debug, Serialize, Deserialize, Clone)]
pub struct PkgInfo {// ... 省略其他字段#[serde(default)]pub is_finish: bool,
}impl Default for PkgInfo {fn default() -> Self {Self {// ... 省略其他字段is_finish: false,}}
}

rsup-web前端页面

将前端部分独立一个项目rsup-web,使用了vite-vue3开发,配置了unocss减少 css 的编写。

项目打包后放在web包下的static目录,并提供静态资源访问服务。

/// 获取静态文件路径
pub fn static_file_path() -> String {format!("{}/src/static", env!("CARGO_MANIFEST_DIR"))
}pub async fn run(data: Arc<Mutex<Pkg>>,rx: Receiver<()>,
) -> Result<(), Box<dyn std::error::Error + Send + Sync>> {// ... 省略其他代码HttpServer::new(move || {App::new().app_data(web::Data::new(Arc::clone(&data))).service(index).service(Files::new("/static", static_file_path()).prefer_utf8(true)).app_data(ms.clone()).route("/ws", web::get().to(socket_index))}).bind(format!("0.0.0.0:{}", port))?.run().await?;
}

因为我们是在 core 主包中调用的 web 子包目录,需要处理资源路径文件,通过env!("CARGO_MANIFEST_DIR")获取当前项目路径。

记得在前端项目中配置base,资源是通过/static访问的。

前端 socket 服务连接后立即发送数据

在页面连接 socket 服务后,需要立即发送数据给前端。是为了处理这种情况:后台服务消息已接收处理完,前端连接后没有数据展示。

一种简单的方法就是前端连接后发送一条消息,然后后台接收到消息后再向前端发送数据。

我们想要实现的是后端监听前端连接,成功时发送数据给前端。socket_index函数处理 socket 连接服务,在通过 actix_web::rt::spawn 启动了一个异步任务,调用了Ms::handle_message处理消息。

async fn socket_index(req: HttpRequest,stream: web::Payload,ms: web::Data<Arc<Mutex<Ms>>>,
) -> Result<HttpResponse, Error> {let (res, session, msg_stream) = actix_ws::handle(&req, stream)?;let ms = ms.get_ref().clone();let client_ip = req.connection_info().realip_remote_addr().unwrap()actix_web::rt::spawn(async move {println!("new connection client's ip : {} ",clinent_ip);Ms::handle_message(ms, session, msg_stream).await;});Ok(res)
}

Ms::handle_message处理消息时,通过loop { }语法循环检测是否有消息过来,当通道有消息时,rx.recv()接收数据更新,然后向前端发送数据。这就造成了ms_lock一直被锁定,我们想要在开始执行发送数据,但是由于ms数据对象一致被循环锁定,异步任务无法获取到数据对象,就无法发送数据。

pub async fn handle_message(ms: Arc<Mutex<Ms>>,mut session: Session,mut msg_stream: MessageStream,
) {// ... 省略其他代码// 向前端发送消息let ms_clone = ms.clone();let session_clone = session.clone();tokio::spawn(async move {let ms_lock = ms_clone.lock().await;ms_lock.send_message(session_clone).await;});loop {let mut ms_lock = ms.lock().await;// ... 省略其他代码Some(_) = ms_lock.rx.recv()=> {println!("Got message");drop(ms_lock);let ms_lock = ms.lock().await;ms_lock.send_message(session.clone()).await;}}
}

在不改变现有的逻辑下,采取超时没有接收到消息时,结束本次循环。这样就释放了当前数据锁,给了一段异步任务获取数据对象的时间,从而可以发送数据。

use tokio::time::{timeout, Duration};pub async fn handle_message(ms: Arc<Mutex<Ms>>,mut session: Session,mut msg_stream: MessageStream,
) {// ... 省略其他代码loop {// ... 省略其他代码result = timeout(Duration::from_millis(100),ms_lock.rx.recv())=>{match result{Ok(Some(_))=>{drop(ms_lock);let ms_lock = ms.lock().await;ms_lock.send_message(session.clone()).await;}Ok(None)=>{break;}Err(_)=>{continue;}}}}
}

设置了 100ms 的超时时间,没有消息时,结束本次循环。在释放ms_lock数据锁后,异步任务获取到数据对象,发送数据。

这一块的逻辑会导致很多问题。已完全重构。

数据更新

我们通过创建通信通道tokio::sync::channel发送数据更新的消息。共享数据data和通道tx\rx都是分开的,这就导致了在所有数据更新的地方都需要发送更新通知tx实例引用,需要同时传送多个参数。

#[tokio::main]
async fn main() {// ... 省略其他代码let data: Arc<Mutex<pkg::Pkg>> = Arc::new(Mutex::new(pkg::Pkg::new()));let (tx, rx) = channel(100);// ... 省略其他代码
}

为了方便,我们定义结构体Package,将datatx封装到结构体中。为了实现克隆,我们需要使用Arc<Mutex<T>>包装它们。并需要实现Clone特性。

pub struct Package {pub pkg: Arc<Mutex<Pkg>>,pub sender: Arc<Mutex<Sender<()>>>,pub receiver: Arc<Mutex<Receiver<()>>>,
}
impl Clone for Package {fn clone(&self) -> Self {Self {pkg: self.pkg.clone(),sender: self.sender.clone(),receiver: self.receiver.clone(),}}
}

这样在主入口中,我们就可以通过Package::new()创建实例,然后传递给需要更新的地方。

之前理解的channel通道,以为多生产单消费是不能引用receiver实例的,原来是可以通过Arc<Mutex<T>>包装引用的,只是在消费时,如果有多个地方消费,只会有一个地方收到消息。

依赖版本对比

获取到目录下的package.json文件以及通过请求https://registry.npmjs.org/{pkg_name}获取到依赖包信息后,怎么过滤出需要更新的版本呢。

使用semver crate 包进行版本对比。数据格式要求是MAJOR.MINOR.PATCH

  • MAJOR 主版本更新,不兼容的 API 修改
  • MINOR 次要版本更新,兼容的功能性新增
  • PATCH 补丁版本更新,兼容的 bug 修复
pub fn compare_version(current_v: &str,latest_v: &str,all_v: HashMap<String, VersionInfo>,
) -> HashMap<String, VersionInfo> {// ... 省略其他代码// 当前版本let c_v = Version::parse(&clear_current_v).unwrap();// 最新版本let l_v = Version::parse(&latest_v).unwrap();let mut vs: Vec<Version> = all_v.keys().filter_map(|k| Version::parse(k).ok()).filter(|v| *v > c_v && *v <= l_v).collect();// ... 省略其他代码
}

总结

文章中的某些设计逻辑可能现在已经优化改掉了,只是作为过程中的想法记录一下。

往期关联学习文章:

  1. 模式匹配、trait 特征行为、必包、宏
  2. 多线程任务执行
  3. 并发线程间的数据共享
  4. 包、模块,引用路径
  5. 开发一个命令行工具

这篇关于rust 命令行工具rsup管理前端npm依赖的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1142119

相关文章

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

Rust 数据类型详解

《Rust数据类型详解》本文介绍了Rust编程语言中的标量类型和复合类型,标量类型包括整数、浮点数、布尔和字符,而复合类型则包括元组和数组,标量类型用于表示单个值,具有不同的表示和范围,本文介绍的非... 目录一、标量类型(Scalar Types)1. 整数类型(Integer Types)1.1 整数字

Spring核心思想之浅谈IoC容器与依赖倒置(DI)

《Spring核心思想之浅谈IoC容器与依赖倒置(DI)》文章介绍了Spring的IoC和DI机制,以及MyBatis的动态代理,通过注解和反射,Spring能够自动管理对象的创建和依赖注入,而MyB... 目录一、控制反转 IoC二、依赖倒置 DI1. 详细概念2. Spring 中 DI 的实现原理三、

高效管理你的Linux系统: Debian操作系统常用命令指南

《高效管理你的Linux系统:Debian操作系统常用命令指南》在Debian操作系统中,了解和掌握常用命令对于提高工作效率和系统管理至关重要,本文将详细介绍Debian的常用命令,帮助读者更好地使... Debian是一个流行的linux发行版,它以其稳定性、强大的软件包管理和丰富的社区资源而闻名。在使用

基于C#实现PDF文件合并工具

《基于C#实现PDF文件合并工具》这篇文章主要为大家详细介绍了如何基于C#实现一个简单的PDF文件合并工具,文中的示例代码简洁易懂,有需要的小伙伴可以跟随小编一起学习一下... 界面主要用于发票PDF文件的合并。经常出差要报销的很有用。代码using System;using System.Col

redis-cli命令行工具的使用小结

《redis-cli命令行工具的使用小结》redis-cli是Redis的命令行客户端,支持多种参数用于连接、操作和管理Redis数据库,本文给大家介绍redis-cli命令行工具的使用小结,感兴趣的... 目录基本连接参数基本连接方式连接远程服务器带密码连接操作与格式参数-r参数重复执行命令-i参数指定命

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

React实现原生APP切换效果

《React实现原生APP切换效果》最近需要使用Hybrid的方式开发一个APP,交互和原生APP相似并且需要IM通信,本文给大家介绍了使用React实现原生APP切换效果,文中通过代码示例讲解的非常... 目录背景需求概览技术栈实现步骤根据 react-router-dom 文档配置好路由添加过渡动画使用