Codeforces Round 970 (Div. 3)(ABCDEF)

2024-09-06 07:28
文章标签 codeforces round div abcdef 970

本文主要是介绍Codeforces Round 970 (Div. 3)(ABCDEF),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Codeforces Round 970 (Div. 3)

A:Sakurako's Exams

签到

题意:给定1,2的数量,判断是否能用加减符号使得这些1,2计算出0

void solve()
{cin>>n>>m;if(n%2)cout<<"NO\n";else{if(m%2==0||n)cout<<"YES\n";else cout<<"NO\n";}return ;
}

B:Square or Not

签到

题意:给定01序列,问从上到下,从左到右排列是否可以得到一个周围为1,内部为0的正方形

void solve()
{string s;cin>>n;cin>>s;int t=sqrt(n);if(t*t!=n){cout<<"No\n";return;}else {int idx=0;for(int i=0;i<t;i++){for(int j=0;j<t;j++){int now=i*t+j;if(i==0||j==0||i==t-1||j==t-1){if(s[now]=='0'){cout<<"No\n";return;}}else if(s[now]=='1'){cout<<"No\n";return;}}}}cout<<"Yes\n";return ;
}

C:Longest Good Arrays

题意:给定左右边界了l,r,问在范围内凑出最长的满足a[i]-a[i-1]<a[i+1]-a[i](i>=2)的最长数组的长度

思路:最优一定是前后两项差从左到右分别为1,2,3,4...,所以二分数组最后一个元素,满足小于r-l的第一个元素位置,再+1就是答案

int n,m;
int cha;
bool check(int x)
{return (x+1)*x/2>cha;
}
void solve()
{cin>>n>>m;cha=m-n;int l=0,r=1e8;while(l+1<r){int mid=l+r>>1;check(mid)?r=mid:l=mid;}cout<<l+1<<'\n';return ;
}

D:Sakurako's Hobby

题意:输入一个数组大小n,然后输入n个数q[i](1<=i<=n)代表i可以到达q[i](保证q数组一定是一个排列),然后输入一个01串,当第i个位置为‘1’代表为白块,为'0'代表为黑块,f[i]为能够到达i这个点的所有黑块的数量,输出所有f[i](1<=i<=n)

例如:

输入

2

2 1

00

输出

2 2 

(因为1位置的点都能由1,2到达)

思路:并查集,把所有有联系的点都缩到一个根上(由于是一个排列,所以所有可以直接可以到达或者间接到达的点都可以形成一个环,也就是相互到达),最后问f[i]只需要把一个环中的所有店都累加到find(i),也就是根节点上

代码:

#include <map>
#include <set>
#include <queue>
#include <deque>
#include <cmath>
#include <vector>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <unordered_map>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define pp pop_back()
#define int long long
#define laile cout<<"laile"<<endl
#define lowbit(x) ((x)&(-x))
#define double long double
#define sf(x) scanf("%lld",&x)
#define sff(x,y) scanf("%lld %lld",&x,&y)
#define sd(x) scanf("%Lf",&x)
#define sdd(x,y) scanf("%Lf %Lf",&x,&y)
#define _for(i,n) for(int i=0;i<(n);++i)
#define _rep(i,a,b) for(int i=(a);i<=(b);++i)
#define _pre(i,a,b) for(int i=(a);i>=(b);--i)
#define all(x) (x).begin(), (x).end()
#define IOS ios::sync_with_stdio(false);cin.tie(0);cout.tie(0)
typedef unsigned long long ULL;
typedef pair<int,int>PII;
const int N=1e6+10,INF=4e18;
int n,m;
int f[N],q[N],cnt[N];
bool st[N];
int find(int x)
{if(x!=f[x])return f[x]=find(f[x]);return f[x];
}
void root(int a,int b)
{int x=find(a),y=find(b);if(x!=y)f[x]=y;
}
void solve()
{cin>>n;_rep(i,1,n)cin>>q[i],f[i]=i,st[i]=false,cnt[i]=0;string s;cin>>s;s=" "+s;_rep(i,1,n){int now=i;while(!st[now]){st[now]=true;root(now,q[now]);now=q[now];}}	_rep(i,1,n)if(s[i]=='0')cnt[find(i)]++;_rep(i,1,n)cout<<cnt[find(i)]<<" ";cout<<'\n';return ;
}
signed main()
{IOS;int T=1;cin>>T;while(T--)solve();return 0;
}

E:Alternating String

题意:给定一个字符串,现在有两个操作

1:选一个字母删除(但是这个最多只能操作一次)

2:将一个位置的字母改成另一个字母

问你把这个字符串变成一个:奇数位置字母都相同,偶数位置字母都相同 的字符串的最小操作次数

思路

只要发现一个特点就可以想到这个思路,那就是当你选择把当前这个点i的字母删除之后,后面所有的字母所在的奇偶位置就发生了互换

1.首先考虑不删除字母的情况

维护一个hou[26][2]的数组,其中第一维代表哪个字母(0~25),第二维 0/1 代表 奇数位/偶数位 

那么我首先遍历奇数位置的所有字母,求和sum就是奇数位置字母的数量,求最大值ma就是奇数位置 字母的众数那么sum-ma就是奇数位置最少需要改变的字母的数量

偶数位置同理,那么就能求导不删除字母情况下最小操作次数

2,考虑删除字母的情况

假如我现在删除的是i号点,那么1~i-1号点的奇偶性质未发生改变,那么我就从小到大遍历即可,i+1~n号点的奇偶性质全部发生了改变,那么显然如果我能预处理出i+1~n的所有状态,也就是前面说到的hou[26][2],那么奇数位本来是hou[0~25][0]现在只需要考虑hou[0~25][1],偶数位置同理,那么就可以发现这个hou[0~25][2]显然可以提前预处理出来,然后遍历到第i个点的时候把1~i的状态删去就行,这些都可以线性处理,时间复杂度O(26*n)

代码:

#include <map>
#include <set>
#include <queue>
#include <deque>
#include <cmath>
#include <vector>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <unordered_map>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define pp pop_back()
#define int long long
#define laile cout<<"laile"<<endl
#define lowbit(x) ((x)&(-x))
#define double long double
#define sf(x) scanf("%lld",&x)
#define sff(x,y) scanf("%lld %lld",&x,&y)
#define sd(x) scanf("%Lf",&x)
#define sdd(x,y) scanf("%Lf %Lf",&x,&y)
#define _for(i,n) for(int i=0;i<(n);++i)
#define _rep(i,a,b) for(int i=(a);i<=(b);++i)
#define _pre(i,a,b) for(int i=(a);i>=(b);--i)
#define all(x) (x).begin(), (x).end()
#define IOS ios::sync_with_stdio(false);cin.tie(0);cout.tie(0)
typedef unsigned long long ULL;
typedef pair<int,int>PII;
const int N=1e6+10,INF=4e18;
int n,m;
int now[26][2],hou[26][2];//now储存1~i-1的状态,hou储存i+1~n的状态
void solve()
{cin>>n;string s;cin>>s;memset(now,0,sizeof(now));memset(hou,0,sizeof(hou));s=" "+s;_rep(i,1,n)hou[s[i]-'a'][i%2]++;int res=0,sum,ma;_rep(j,0,1){sum=0;	ma=0;_rep(i,0,25){sum+=hou[i][j];ma=max(hou[i][j],ma);}res+=sum-ma;}if(n%2){res=INF;_rep(i,1,n){int nowres=0;hou[s[i]-'a'][i%2]--;_rep(j,0,1){sum=0;ma=0;_rep(k,0,25){sum+=hou[k][j];sum+=now[k][j^1];ma=max(ma,hou[k][j]+now[k][j^1]);}nowres+=sum-ma;}now[s[i]-'a'][i%2]++;res=min(res,nowres+1);}}cout<<res<<"\n";return ;
}
signed main()
{IOS;int T=1;cin>>T;while(T--)solve();return 0;
}

F:Sakurako's Boxt

题意:给定一个数组,为元素之间两两相乘(a[1]*a[2]和a[2]*a[1]重复不算)的平均数是什么

思路:

假设四个元素a_1,a_2,a_3,a_4

那么答案就是\frac{a_1*a_2+a_1*a_3+a_1*a_4+a_2*a_3+a_2*a_4+a_3*a_4}{6}

等价于\frac{a_1*(a_2+a_3+a_4)+a_2*(a_3+a_4)+a_3*(a_4)}{C\binom{2}{4}}

用一个后缀和维护形如(a_2+a_3+a_4)的东西这道题就轻松解决了,只需要注意一下取模和乘法逆元的问题就行了

#include <map>
#include <set>
#include <queue>
#include <deque>
#include <cmath>
#include <vector>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <unordered_map>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define pp pop_back()
#define int long long
#define laile cout<<"laile"<<endl
#define lowbit(x) ((x)&(-x))
#define double long double
#define sf(x) scanf("%lld",&x)
#define sff(x,y) scanf("%lld %lld",&x,&y)
#define sd(x) scanf("%Lf",&x)
#define sdd(x,y) scanf("%Lf %Lf",&x,&y)
#define _for(i,n) for(int i=0;i<(n);++i)
#define _rep(i,a,b) for(int i=(a);i<=(b);++i)
#define _pre(i,a,b) for(int i=(a);i>=(b);--i)
#define all(x) (x).begin(), (x).end()
#define IOS ios::sync_with_stdio(false);cin.tie(0);cout.tie(0)
typedef unsigned long long ULL;
typedef pair<int,int>PII;
const int N=1e6+10,INF=4e18,P=1e9+7;
int n,m;
int hou[N],q[N];
int qmi(int a,int b)
{int res=1;while(b){if(b&1)res=res*a%P;a=a*a%P;b>>=1;}return res;
}
void solve()
{cin>>n;_rep(i,1,n)cin>>q[i];hou[n+1]=0;_pre(i,n,1)hou[i]=hou[i+1]+q[i];int res=0;_rep(i,1,n){res+=(q[i]*(hou[i+1]%P)%P);res%=P;}
//	cout<<"res="<<res<<" "<<n<<endl;cout<<(res*qmi((n*(n-1)/2)%P,P-2)%P)<<'\n';return ;
}
signed main()
{IOS;int T=1;cin>>T;while(T--)solve();return 0;
}

这篇关于Codeforces Round 970 (Div. 3)(ABCDEF)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1141380

相关文章

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯:

Codeforces Round #261 (Div. 2)小记

A  XX注意最后输出满足条件,我也不知道为什么写的这么长。 #define X first#define Y secondvector<pair<int , int> > a ;int can(pair<int , int> c){return -1000 <= c.X && c.X <= 1000&& -1000 <= c.Y && c.Y <= 1000 ;}int m

Codeforces Beta Round #47 C凸包 (最终写法)

题意慢慢看。 typedef long long LL ;int cmp(double x){if(fabs(x) < 1e-8) return 0 ;return x > 0 ? 1 : -1 ;}struct point{double x , y ;point(){}point(double _x , double _y):x(_x) , y(_y){}point op

Codeforces Round #113 (Div. 2) B 判断多边形是否在凸包内

题目点击打开链接 凸多边形A, 多边形B, 判断B是否严格在A内。  注意AB有重点 。  将A,B上的点合在一起求凸包,如果凸包上的点是B的某个点,则B肯定不在A内。 或者说B上的某点在凸包的边上则也说明B不严格在A里面。 这个处理有个巧妙的方法,只需在求凸包的时候, <=  改成< 也就是说凸包一条边上的所有点都重复点都记录在凸包里面了。 另外不能去重点。 int

Codeforces 482B 线段树

求是否存在这样的n个数; m次操作,每次操作就是三个数 l ,r,val          a[l] & a[l+1] &......&a[r] = val 就是区间l---r上的与的值为val 。 也就是意味着区间[L , R] 每个数要执行 | val 操作  最后判断  a[l] & a[l+1] &......&a[r] 是否= val import ja

CSS实现DIV三角形

本文内容收集来自网络 #triangle-up {width: 0;height: 0;border-left: 50px solid transparent;border-right: 50px solid transparent;border-bottom: 100px solid red;} #triangle-down {width: 0;height: 0;bor

创建一个大的DIV,里面的包含两个DIV是可以自由移动

创建一个大的DIV,里面的包含两个DIV是可以自由移动 <body>         <div style="position: relative; background:#DDF8CF;line-height: 50px"> <div style="text-align: center; width: 100%;padding-top: 0px;"><h3>定&nbsp;位&nbsp;

Codeforces Round 971 (Div. 4) (A~G1)

A、B题太简单,不做解释 C 对于 x y 两个方向,每一个方向至少需要 x / k 向上取整的步数,取最大值。 由于 x 方向先移动,假如 x 方向需要的步数多于 y 方向的步数,那么最后 y 方向的那一步就不需要了,答案减 1 代码 #include <iostream>#include <algorithm>#include <vector>#include <string>

CF#271 (Div. 2) D.(dp)

D. Flowers time limit per test 1.5 seconds memory limit per test 256 megabytes input standard input output standard output 题目链接: http://codeforces.com/contest/474/problem/D We s

CF #278 (Div. 2) B.(暴力枚举+推导公式+数学构造)

B. Candy Boxes time limit per test 1 second memory limit per test 256 megabytes input standard input output standard output 题目链接: http://codeforces.com/contest/488/problem/B There