Labelhot和OneHot的使用

2024-09-06 06:32
文章标签 使用 onehot labelhot

本文主要是介绍Labelhot和OneHot的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对于一些特征工程方面,有时会用到LabelEncoder和OneHotEncoder。

比如kaggle中对于性别,sex,一般的属性值是male和female。两个值。那么不靠谱的方法直接用0表示male,用1表示female 了。上面说了这是不靠谱的。

所以要用one-hot编码。

首先我们需要用LabelEncoder把sex这个属性列里面的离散属性用数字来表示,就是上面的过程,把male,female这种不同的字符的属性值,用数字表示。

以titanic 里面的train数据集为例.


Step1和step2解决的就是先fit所有样本的Sex属性值,就知道有多少个不同的属性值,有male和female,就用0和1表示,假如有3个不同的值,就用0,1,2表示。step2中transform操作就是转为数字表示形式。


但是转换成这样还不行,上面说过了,这样直接用数字表示的话,是不合理的,至于为什么不合理,待会引入scikit learn 中的原文。所以再把这些数字转化为one-hot编码形式。

这里就用OneHotEncoder



两行代码就把数值型表示转为了one-hot编码形式。



下面引入scikit learn中的OneHotEncoder的介绍。
http://scikit-learn.org/stable/modules/preprocessing.html#preprocessing
具体内容看上面链接,下面转载这个博客对一些文字的翻译
http://blog.csdn.net/google19890102/article/details/44039761

一、One-Hot Encoding

      One-Hot 编码,又称为一位有效编码,主要是采用 位状态寄存器来对 个状态进行编码,每个状态都由他独立的寄存器位,并且在任意时候只有一位有效。
有如下三个特征属性:

二、One-Hot Encoding的处理方法

三、实际的Python代码

    在实际的机器学习的应用任务中,特征有时候并不总是连续值,有可能是一些分类值,如性别可分为“ male ”和“ female ”。在机器学习任务中,对于这样的特征,通常我们需要对其进行特征数字化,如下面的例子:
  • 性别:["male","female"]
  • 地区:["Europe","US","Asia"]
  • 浏览器:["Firefox","Chrome","Safari","Internet Explorer"]
对于某一个样本,如[" male "," US "," Internet Explorer "],我们需要将这个分类值的特征数字化,最直接的方法,我们可以采用序列化的方式:[0,1,3]。但是这样的特征处理并不能直接放入机器学习算法中。
    对于上述的问题,性别的属性是二维的,同理,地区是三维的,浏览器则是思维的,这样,我们可以采用One-Hot编码的方式对上述的样本“ [" male "," US "," Internet Explorer "] ”编码,“ male ”则对应着[1,0],同理“ US ”对应着[0,1,0],“ Internet Explorer ”对应着[0,0,0,1]。则完整的特征数字化的结果为:[1,0,0,1,0,0,0,0,1]。这样导致的一个结果就是数据会变得非常的稀疏。



然后我主要介绍一下源文档的代码,
import numpy as np from sklearn.preprocessing 
import OneHotEncoder 
enc = OneHotEncoder() 
enc.fit( [[0, 0, 3], [1, 1, 0], [0, 2, 1],[1, 0, 2]] )  
print  "enc.n_values_ is:" ,enc.n_values_
print  "enc.feature_indices_ is:" ,enc.feature_indices_
print  enc.transform( [[0, 1, 1]] ).toarray()

enc.n_values_ is: [ 2  3  4 ]
enc.feature_indices_ is: [ 0  2  5  9 ]
[[ 1. 0. 0. 1. 0. 0. 1. 0. 0.]]



这个代码很容易理解,简单解释一下没我一开始也没整明白。

首先由四个样本数据 [0, 0, 3], [1, 1, 0], [0, 2, 1],[1, 0, 2],共有三个属性特征,也就是三列。比如第一列,有0,1两个属性值,第二列有0,1,2三个值.....

那么 enc.n_values_就是每个属性列不同属性值的个数,所以分别是2,3,4

再看 enc.feature_indices_是对 enc.n_values_的一个累加。

再看 [0, 1, 1]这个样本是如何转换为基于上面四个数据下的one-hot编码的。
第一列:0->10
第二列:1->010
第三列:1->0100

简单解释一下,在第三列有,0,1,2,3四个值,分别对应1000,0100,0010,0001.

这篇关于Labelhot和OneHot的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1141267

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

prometheus如何使用pushgateway监控网路丢包

《prometheus如何使用pushgateway监控网路丢包》:本文主要介绍prometheus如何使用pushgateway监控网路丢包问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录监控网路丢包脚本数据图表总结监控网路丢包脚本[root@gtcq-gt-monitor-prome

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected

C++ Log4cpp跨平台日志库的使用小结

《C++Log4cpp跨平台日志库的使用小结》Log4cpp是c++类库,本文详细介绍了C++日志库log4cpp的使用方法,及设置日志输出格式和优先级,具有一定的参考价值,感兴趣的可以了解一下... 目录一、介绍1. log4cpp的日志方式2.设置日志输出的格式3. 设置日志的输出优先级二、Window

Ubuntu如何分配​​未使用的空间

《Ubuntu如何分配​​未使用的空间》Ubuntu磁盘空间不足,实际未分配空间8.2G因LVM卷组名称格式差异(双破折号误写)导致无法扩展,确认正确卷组名后,使用lvextend和resize2fs... 目录1:原因2:操作3:报错5:解决问题:确认卷组名称​6:再次操作7:验证扩展是否成功8:问题已解