Python模块 - Collections

2024-09-06 03:32
文章标签 python 模块 collections

本文主要是介绍Python模块 - Collections,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

collections的常用类型有:
计数器(Counter)
双向队列(deque)
默认字典(defaultdict)
有序字典(OrderedDict)
可命名元组(namedtuple)

Counter()

Counter 作为字典(dict)的一个子类用来进行hashtable计数,将元素进行数量统计、计数后返回一个字典,键值为元素:值为元素个数

s = 'abcbcaccbbad'  
l = ['a','b','c','c','a','b','b']  
d = {'2': 3, '3': 2, '17': 2}  
# Counter 获取各元素的个数,返回字典  
print(Counter(s))   # Counter({'c': 4, 'b': 4, 'a': 3})  
print(Counter(l))   # Counter({'b': 3, 'a': 2, 'c': 2})  
  • most_common(n)
    如果省略n或者None,most_common()返回计数器中的所有元素。具有相同数量的元素是任意排序的:
# most_common(int) 按照元素出现的次数进行从高到低的排序,返回前int个元素的字典  
m1 = Counter(s)  
print(m1)                 # Counter({'c': 4, 'b': 4, 'a': 3, 'd': 1})  
print(m1.most_common(3))  # [('c', 4), ('b', 4), ('a', 3)]  
>>> Counter('abracadabra').most_common(3)
[('a', 5), ('r', 2), ('b', 2)]
  • elements()
# elements 返回经过计数器Counter后的元素,返回的是一个迭代器  
e1 = Counter(s)  
print(''.join(sorted(e1.elements())))  # aaabbbbcccc  
e2 = Counter(d)  
print(sorted(e2.elements()))  # ['17', '17', '2', '2', '2', '3', '3'] 字典返回value个key  
>>> c = Counter(a=4, b=2, c=0, d=-2)
>>> list(c.elements())
['a', 'a', 'a', 'a', 'b', 'b']
  • update()
# updateset集合的update一样,对集合进行并集更新  
u1 = Counter(s)  
u1.update('123a')  
print(u1)  # Counter({'a': 4, 'c': 4, 'b': 4, '1': 1, '3': 1, '2': 1})  
  • substract()
# substract 和update类似,只是update是做加法,substract做减法,从另一个集合中减去本集合的元素,  
sub1 = 'which'  
sub2 = 'whatw'  
subset = Counter(sub1)  
print(subset)   # Counter({'h': 2, 'i': 1, 'c': 1, 'w': 1})  
subset.subtract(Counter(sub2))  
print(subset)   # Counter({'c': 1, 'i': 1, 'h': 1, 'a': -1, 't': -1, 'w': -1}) sub1中的h变为2,sub2中h为1,减完以后为1  
  • iteritems()
    与字典dict的items类似,返回由Counter生成的字典的所有item,只是在Counter中此方法返回的是一个迭代器,而不是列表

OrderedDict ()

OrderDict 叫做有序字典,也是字典类型(dict)的一个子类,是对字典的一个补充,由于有序字典记住其插入顺序,因此可以与排序一起使用以排序排序的字典:

>>> # regular unsorted dictionary
>>> d = {'banana': 3, 'apple': 4, 'pear': 1, 'orange': 2}>>> # dictionary sorted by key
>>> OrderedDict(sorted(d.items(), key=lambda t: t[0]))
OrderedDict([('apple', 4), ('banana', 3), ('orange', 2), ('pear', 1)])>>> # dictionary sorted by value
>>> OrderedDict(sorted(d.items(), key=lambda t: t[1]))
OrderedDict([('pear', 1), ('orange', 2), ('banana', 3), ('apple', 4)])>>> # dictionary sorted by length of the key string
>>> OrderedDict(sorted(d.items(), key=lambda t: len(t[0])))
OrderedDict([('pear', 1), ('apple', 4), ('orange', 2), ('banana', 3)])

deque()

deque 包含在文件_collections.py中,属于高性能的数据结构(High performance data structures)之一.可以从两端添加和删除元素,常用的结构是它的简化版。

append:队列右边添加元素
appendleft:队列左边添加元素
clear:清空队列中的所有元素
count:count(value) 返回队列中包含value的个数,结果类型为 integer
extend:extend 队列右边扩展,可以是列表、元组或字典,如果是字典则将字典的key加入到deque
extendleft:extendleft 同extend, 在左边扩展
pop:pop 移除并且返回队列右边的元素
popleft:popleft 移除并且返回队列左边的元素
remove:remove(value) 移除队列第一个出现的元素(从左往右开始的第一次出现的元素value)
reverse: 队列的所有元素进行反转
rotate:rotate(n) 对队列的数进行移动,若n<0,则往左移动即将左边的第一个移动到最后,移动n次,n>0 往右移动

>>> from collections import deque
>>> d = deque('ghi')                 # make a new deque with three items
>>> for elem in d:                   # iterate over the deque's elements
...     print elem.upper()
G
H
I>>> d.append('j')                    # add a new entry to the right side
>>> d.appendleft('f')                # add a new entry to the left side
>>> d                                # show the representation of the deque
deque(['f', 'g', 'h', 'i', 'j'])>>> d.pop()                          # return and remove the rightmost item
'j'
>>> d.popleft()                      # return and remove the leftmost item
'f'
>>> list(d)                          # list the contents of the deque
['g', 'h', 'i']
>>> d[0]                             # peek at leftmost item
'g'
>>> d[-1]                            # peek at rightmost item
'i'>>> list(reversed(d))                # list the contents of a deque in reverse
['i', 'h', 'g']
>>> 'h' in d                         # search the deque
True
>>> d.extend('jkl')                  # add multiple elements at once
>>> d
deque(['g', 'h', 'i', 'j', 'k', 'l'])
>>> d.rotate(1)                      # right rotation
>>> d
deque(['l', 'g', 'h', 'i', 'j', 'k'])
>>> d.rotate(-1)                     # left rotation
>>> d
deque(['g', 'h', 'i', 'j', 'k', 'l'])>>> deque(reversed(d))               # make a new deque in reverse order
deque(['l', 'k', 'j', 'i', 'h', 'g'])
>>> d.clear()                        # empty the deque
>>> d.pop()                          # cannot pop from an empty deque
Traceback (most recent call last):File "<pyshell#6>", line 1, in -toplevel-d.pop()
IndexError: pop from an empty deque>>> d.extendleft('abc')              # extendleft() reverses the input order
>>> d
deque(['c', 'b', 'a'])

namedtuple

namedtuple是继承自tuple的子类。namedtuple创建一个和tuple类似的对象,而且对象拥有可访问的属性。
如果要用坐标和半径表示一个圆,也可以用namedtuple定义:

# namedtuple('名称', [属性list]):
Circle = namedtuple('Circle', ['x', 'y', 'r'])from collections import namedtuple# 定义一个namedtuple类型User,并包含name,sex和age属性。
User = namedtuple('User', ['name', 'sex', 'age'])# 创建一个User对象
user = User(name='kongxx', sex='male', age=21)# 也可以通过一个list来创建一个User对象,这里注意需要使用"_make"方法
user = User._make(['kongxx', 'male', 21])print user
# User(name='user1', sex='male', age=21)# 获取用户的属性
print user.name
print user.sex
print user.age# 修改对象属性,注意要使用"_replace"方法
user = user._replace(age=22)
print user
# User(name='user1', sex='male', age=21)# 将User对象转换成字典,注意要使用"_asdict"
print user._asdict()
# OrderedDict([('name', 'kongxx'), ('sex', 'male'), ('age', 22)])

这篇关于Python模块 - Collections的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140875

相关文章

python中列表list切分的实现

《python中列表list切分的实现》列表是Python中最常用的数据结构之一,经常需要对列表进行切分操作,本文主要介绍了python中列表list切分的实现,文中通过示例代码介绍的非常详细,对大家... 目录一、列表切片的基本用法1.1 基本切片操作1.2 切片的负索引1.3 切片的省略二、列表切分的高

基于Python实现一个PDF特殊字体提取工具

《基于Python实现一个PDF特殊字体提取工具》在PDF文档处理场景中,我们常常需要针对特定格式的文本内容进行提取分析,本文介绍的PDF特殊字体提取器是一款基于Python开发的桌面应用程序感兴趣的... 目录一、应用背景与功能概述二、技术架构与核心组件2.1 技术选型2.2 系统架构三、核心功能实现解析

通过Python脚本批量复制并规范命名视频文件

《通过Python脚本批量复制并规范命名视频文件》本文介绍了如何通过Python脚本批量复制并规范命名视频文件,实现自动补齐数字编号、保留原始文件、智能识别有效文件等功能,听过代码示例介绍的非常详细,... 目录一、问题场景:杂乱的视频文件名二、完整解决方案三、关键技术解析1. 智能路径处理2. 精准文件名

基于Python开发PDF转Doc格式小程序

《基于Python开发PDF转Doc格式小程序》这篇文章主要为大家详细介绍了如何基于Python开发PDF转Doc格式小程序,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 用python实现PDF转Doc格式小程序以下是一个使用Python实现PDF转DOC格式的GUI程序,采用T

Python使用PIL库将PNG图片转换为ICO图标的示例代码

《Python使用PIL库将PNG图片转换为ICO图标的示例代码》在软件开发和网站设计中,ICO图标是一种常用的图像格式,特别适用于应用程序图标、网页收藏夹图标等场景,本文将介绍如何使用Python的... 目录引言准备工作代码解析实践操作结果展示结语引言在软件开发和网站设计中,ICO图标是一种常用的图像

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像

使用Python实现表格字段智能去重

《使用Python实现表格字段智能去重》在数据分析和处理过程中,数据清洗是一个至关重要的步骤,其中字段去重是一个常见且关键的任务,下面我们看看如何使用Python进行表格字段智能去重吧... 目录一、引言二、数据重复问题的常见场景与影响三、python在数据清洗中的优势四、基于Python的表格字段智能去重

Python中如何控制小数点精度与对齐方式

《Python中如何控制小数点精度与对齐方式》在Python编程中,数据输出格式化是一个常见的需求,尤其是在涉及到小数点精度和对齐方式时,下面小编就来为大家介绍一下如何在Python中实现这些功能吧... 目录一、控制小数点精度1. 使用 round() 函数2. 使用字符串格式化二、控制对齐方式1. 使用

Python如何快速下载依赖

《Python如何快速下载依赖》本文介绍了四种在Python中快速下载依赖的方法,包括使用国内镜像源、开启pip并发下载功能、使用pipreqs批量下载项目依赖以及使用conda管理依赖,通过这些方法... 目录python快速下载依赖1. 使用国内镜像源临时使用镜像源永久配置镜像源2. 使用 pip 的并

Python如何实现读取csv文件时忽略文件的编码格式

《Python如何实现读取csv文件时忽略文件的编码格式》我们再日常读取csv文件的时候经常会发现csv文件的格式有多种,所以这篇文章为大家介绍了Python如何实现读取csv文件时忽略文件的编码格式... 目录1、背景介绍2、库的安装3、核心代码4、完整代码1、背景介绍我们再日常读取csv文件的时候经常