Python模块 - Collections

2024-09-06 03:32
文章标签 python 模块 collections

本文主要是介绍Python模块 - Collections,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

collections的常用类型有:
计数器(Counter)
双向队列(deque)
默认字典(defaultdict)
有序字典(OrderedDict)
可命名元组(namedtuple)

Counter()

Counter 作为字典(dict)的一个子类用来进行hashtable计数,将元素进行数量统计、计数后返回一个字典,键值为元素:值为元素个数

s = 'abcbcaccbbad'  
l = ['a','b','c','c','a','b','b']  
d = {'2': 3, '3': 2, '17': 2}  
# Counter 获取各元素的个数,返回字典  
print(Counter(s))   # Counter({'c': 4, 'b': 4, 'a': 3})  
print(Counter(l))   # Counter({'b': 3, 'a': 2, 'c': 2})  
  • most_common(n)
    如果省略n或者None,most_common()返回计数器中的所有元素。具有相同数量的元素是任意排序的:
# most_common(int) 按照元素出现的次数进行从高到低的排序,返回前int个元素的字典  
m1 = Counter(s)  
print(m1)                 # Counter({'c': 4, 'b': 4, 'a': 3, 'd': 1})  
print(m1.most_common(3))  # [('c', 4), ('b', 4), ('a', 3)]  
>>> Counter('abracadabra').most_common(3)
[('a', 5), ('r', 2), ('b', 2)]
  • elements()
# elements 返回经过计数器Counter后的元素,返回的是一个迭代器  
e1 = Counter(s)  
print(''.join(sorted(e1.elements())))  # aaabbbbcccc  
e2 = Counter(d)  
print(sorted(e2.elements()))  # ['17', '17', '2', '2', '2', '3', '3'] 字典返回value个key  
>>> c = Counter(a=4, b=2, c=0, d=-2)
>>> list(c.elements())
['a', 'a', 'a', 'a', 'b', 'b']
  • update()
# updateset集合的update一样,对集合进行并集更新  
u1 = Counter(s)  
u1.update('123a')  
print(u1)  # Counter({'a': 4, 'c': 4, 'b': 4, '1': 1, '3': 1, '2': 1})  
  • substract()
# substract 和update类似,只是update是做加法,substract做减法,从另一个集合中减去本集合的元素,  
sub1 = 'which'  
sub2 = 'whatw'  
subset = Counter(sub1)  
print(subset)   # Counter({'h': 2, 'i': 1, 'c': 1, 'w': 1})  
subset.subtract(Counter(sub2))  
print(subset)   # Counter({'c': 1, 'i': 1, 'h': 1, 'a': -1, 't': -1, 'w': -1}) sub1中的h变为2,sub2中h为1,减完以后为1  
  • iteritems()
    与字典dict的items类似,返回由Counter生成的字典的所有item,只是在Counter中此方法返回的是一个迭代器,而不是列表

OrderedDict ()

OrderDict 叫做有序字典,也是字典类型(dict)的一个子类,是对字典的一个补充,由于有序字典记住其插入顺序,因此可以与排序一起使用以排序排序的字典:

>>> # regular unsorted dictionary
>>> d = {'banana': 3, 'apple': 4, 'pear': 1, 'orange': 2}>>> # dictionary sorted by key
>>> OrderedDict(sorted(d.items(), key=lambda t: t[0]))
OrderedDict([('apple', 4), ('banana', 3), ('orange', 2), ('pear', 1)])>>> # dictionary sorted by value
>>> OrderedDict(sorted(d.items(), key=lambda t: t[1]))
OrderedDict([('pear', 1), ('orange', 2), ('banana', 3), ('apple', 4)])>>> # dictionary sorted by length of the key string
>>> OrderedDict(sorted(d.items(), key=lambda t: len(t[0])))
OrderedDict([('pear', 1), ('apple', 4), ('orange', 2), ('banana', 3)])

deque()

deque 包含在文件_collections.py中,属于高性能的数据结构(High performance data structures)之一.可以从两端添加和删除元素,常用的结构是它的简化版。

append:队列右边添加元素
appendleft:队列左边添加元素
clear:清空队列中的所有元素
count:count(value) 返回队列中包含value的个数,结果类型为 integer
extend:extend 队列右边扩展,可以是列表、元组或字典,如果是字典则将字典的key加入到deque
extendleft:extendleft 同extend, 在左边扩展
pop:pop 移除并且返回队列右边的元素
popleft:popleft 移除并且返回队列左边的元素
remove:remove(value) 移除队列第一个出现的元素(从左往右开始的第一次出现的元素value)
reverse: 队列的所有元素进行反转
rotate:rotate(n) 对队列的数进行移动,若n<0,则往左移动即将左边的第一个移动到最后,移动n次,n>0 往右移动

>>> from collections import deque
>>> d = deque('ghi')                 # make a new deque with three items
>>> for elem in d:                   # iterate over the deque's elements
...     print elem.upper()
G
H
I>>> d.append('j')                    # add a new entry to the right side
>>> d.appendleft('f')                # add a new entry to the left side
>>> d                                # show the representation of the deque
deque(['f', 'g', 'h', 'i', 'j'])>>> d.pop()                          # return and remove the rightmost item
'j'
>>> d.popleft()                      # return and remove the leftmost item
'f'
>>> list(d)                          # list the contents of the deque
['g', 'h', 'i']
>>> d[0]                             # peek at leftmost item
'g'
>>> d[-1]                            # peek at rightmost item
'i'>>> list(reversed(d))                # list the contents of a deque in reverse
['i', 'h', 'g']
>>> 'h' in d                         # search the deque
True
>>> d.extend('jkl')                  # add multiple elements at once
>>> d
deque(['g', 'h', 'i', 'j', 'k', 'l'])
>>> d.rotate(1)                      # right rotation
>>> d
deque(['l', 'g', 'h', 'i', 'j', 'k'])
>>> d.rotate(-1)                     # left rotation
>>> d
deque(['g', 'h', 'i', 'j', 'k', 'l'])>>> deque(reversed(d))               # make a new deque in reverse order
deque(['l', 'k', 'j', 'i', 'h', 'g'])
>>> d.clear()                        # empty the deque
>>> d.pop()                          # cannot pop from an empty deque
Traceback (most recent call last):File "<pyshell#6>", line 1, in -toplevel-d.pop()
IndexError: pop from an empty deque>>> d.extendleft('abc')              # extendleft() reverses the input order
>>> d
deque(['c', 'b', 'a'])

namedtuple

namedtuple是继承自tuple的子类。namedtuple创建一个和tuple类似的对象,而且对象拥有可访问的属性。
如果要用坐标和半径表示一个圆,也可以用namedtuple定义:

# namedtuple('名称', [属性list]):
Circle = namedtuple('Circle', ['x', 'y', 'r'])from collections import namedtuple# 定义一个namedtuple类型User,并包含name,sex和age属性。
User = namedtuple('User', ['name', 'sex', 'age'])# 创建一个User对象
user = User(name='kongxx', sex='male', age=21)# 也可以通过一个list来创建一个User对象,这里注意需要使用"_make"方法
user = User._make(['kongxx', 'male', 21])print user
# User(name='user1', sex='male', age=21)# 获取用户的属性
print user.name
print user.sex
print user.age# 修改对象属性,注意要使用"_replace"方法
user = user._replace(age=22)
print user
# User(name='user1', sex='male', age=21)# 将User对象转换成字典,注意要使用"_asdict"
print user._asdict()
# OrderedDict([('name', 'kongxx'), ('sex', 'male'), ('age', 22)])

这篇关于Python模块 - Collections的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140875

相关文章

一文详解如何在Python中从字符串中提取部分内容

《一文详解如何在Python中从字符串中提取部分内容》:本文主要介绍如何在Python中从字符串中提取部分内容的相关资料,包括使用正则表达式、Pyparsing库、AST(抽象语法树)、字符串操作... 目录前言解决方案方法一:使用正则表达式方法二:使用 Pyparsing方法三:使用 AST方法四:使用字

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

Python运行中频繁出现Restart提示的解决办法

《Python运行中频繁出现Restart提示的解决办法》在编程的世界里,遇到各种奇怪的问题是家常便饭,但是,当你的Python程序在运行过程中频繁出现“Restart”提示时,这可能不仅仅是令人头疼... 目录问题描述代码示例无限循环递归调用内存泄漏解决方案1. 检查代码逻辑无限循环递归调用内存泄漏2.

Python中判断对象是否为空的方法

《Python中判断对象是否为空的方法》在Python开发中,判断对象是否为“空”是高频操作,但看似简单的需求却暗藏玄机,从None到空容器,从零值到自定义对象的“假值”状态,不同场景下的“空”需要精... 目录一、python中的“空”值体系二、精准判定方法对比三、常见误区解析四、进阶处理技巧五、性能优化

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

python logging模块详解及其日志定时清理方式

《pythonlogging模块详解及其日志定时清理方式》:本文主要介绍pythonlogging模块详解及其日志定时清理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录python logging模块及日志定时清理1.创建logger对象2.logging.basicCo

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

如何将Python彻底卸载的三种方法

《如何将Python彻底卸载的三种方法》通常我们在一些软件的使用上有碰壁,第一反应就是卸载重装,所以有小伙伴就问我Python怎么卸载才能彻底卸载干净,今天这篇文章,小编就来教大家如何彻底卸载Pyth... 目录软件卸载①方法:②方法:③方法:清理相关文件夹软件卸载①方法:首先,在安装python时,下

python uv包管理小结

《pythonuv包管理小结》uv是一个高性能的Python包管理工具,它不仅能够高效地处理包管理和依赖解析,还提供了对Python版本管理的支持,本文主要介绍了pythonuv包管理小结,具有一... 目录安装 uv使用 uv 管理 python 版本安装指定版本的 Python查看已安装的 Python

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t