Python模块 - Collections

2024-09-06 03:32
文章标签 python 模块 collections

本文主要是介绍Python模块 - Collections,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

collections的常用类型有:
计数器(Counter)
双向队列(deque)
默认字典(defaultdict)
有序字典(OrderedDict)
可命名元组(namedtuple)

Counter()

Counter 作为字典(dict)的一个子类用来进行hashtable计数,将元素进行数量统计、计数后返回一个字典,键值为元素:值为元素个数

s = 'abcbcaccbbad'  
l = ['a','b','c','c','a','b','b']  
d = {'2': 3, '3': 2, '17': 2}  
# Counter 获取各元素的个数,返回字典  
print(Counter(s))   # Counter({'c': 4, 'b': 4, 'a': 3})  
print(Counter(l))   # Counter({'b': 3, 'a': 2, 'c': 2})  
  • most_common(n)
    如果省略n或者None,most_common()返回计数器中的所有元素。具有相同数量的元素是任意排序的:
# most_common(int) 按照元素出现的次数进行从高到低的排序,返回前int个元素的字典  
m1 = Counter(s)  
print(m1)                 # Counter({'c': 4, 'b': 4, 'a': 3, 'd': 1})  
print(m1.most_common(3))  # [('c', 4), ('b', 4), ('a', 3)]  
>>> Counter('abracadabra').most_common(3)
[('a', 5), ('r', 2), ('b', 2)]
  • elements()
# elements 返回经过计数器Counter后的元素,返回的是一个迭代器  
e1 = Counter(s)  
print(''.join(sorted(e1.elements())))  # aaabbbbcccc  
e2 = Counter(d)  
print(sorted(e2.elements()))  # ['17', '17', '2', '2', '2', '3', '3'] 字典返回value个key  
>>> c = Counter(a=4, b=2, c=0, d=-2)
>>> list(c.elements())
['a', 'a', 'a', 'a', 'b', 'b']
  • update()
# updateset集合的update一样,对集合进行并集更新  
u1 = Counter(s)  
u1.update('123a')  
print(u1)  # Counter({'a': 4, 'c': 4, 'b': 4, '1': 1, '3': 1, '2': 1})  
  • substract()
# substract 和update类似,只是update是做加法,substract做减法,从另一个集合中减去本集合的元素,  
sub1 = 'which'  
sub2 = 'whatw'  
subset = Counter(sub1)  
print(subset)   # Counter({'h': 2, 'i': 1, 'c': 1, 'w': 1})  
subset.subtract(Counter(sub2))  
print(subset)   # Counter({'c': 1, 'i': 1, 'h': 1, 'a': -1, 't': -1, 'w': -1}) sub1中的h变为2,sub2中h为1,减完以后为1  
  • iteritems()
    与字典dict的items类似,返回由Counter生成的字典的所有item,只是在Counter中此方法返回的是一个迭代器,而不是列表

OrderedDict ()

OrderDict 叫做有序字典,也是字典类型(dict)的一个子类,是对字典的一个补充,由于有序字典记住其插入顺序,因此可以与排序一起使用以排序排序的字典:

>>> # regular unsorted dictionary
>>> d = {'banana': 3, 'apple': 4, 'pear': 1, 'orange': 2}>>> # dictionary sorted by key
>>> OrderedDict(sorted(d.items(), key=lambda t: t[0]))
OrderedDict([('apple', 4), ('banana', 3), ('orange', 2), ('pear', 1)])>>> # dictionary sorted by value
>>> OrderedDict(sorted(d.items(), key=lambda t: t[1]))
OrderedDict([('pear', 1), ('orange', 2), ('banana', 3), ('apple', 4)])>>> # dictionary sorted by length of the key string
>>> OrderedDict(sorted(d.items(), key=lambda t: len(t[0])))
OrderedDict([('pear', 1), ('apple', 4), ('orange', 2), ('banana', 3)])

deque()

deque 包含在文件_collections.py中,属于高性能的数据结构(High performance data structures)之一.可以从两端添加和删除元素,常用的结构是它的简化版。

append:队列右边添加元素
appendleft:队列左边添加元素
clear:清空队列中的所有元素
count:count(value) 返回队列中包含value的个数,结果类型为 integer
extend:extend 队列右边扩展,可以是列表、元组或字典,如果是字典则将字典的key加入到deque
extendleft:extendleft 同extend, 在左边扩展
pop:pop 移除并且返回队列右边的元素
popleft:popleft 移除并且返回队列左边的元素
remove:remove(value) 移除队列第一个出现的元素(从左往右开始的第一次出现的元素value)
reverse: 队列的所有元素进行反转
rotate:rotate(n) 对队列的数进行移动,若n<0,则往左移动即将左边的第一个移动到最后,移动n次,n>0 往右移动

>>> from collections import deque
>>> d = deque('ghi')                 # make a new deque with three items
>>> for elem in d:                   # iterate over the deque's elements
...     print elem.upper()
G
H
I>>> d.append('j')                    # add a new entry to the right side
>>> d.appendleft('f')                # add a new entry to the left side
>>> d                                # show the representation of the deque
deque(['f', 'g', 'h', 'i', 'j'])>>> d.pop()                          # return and remove the rightmost item
'j'
>>> d.popleft()                      # return and remove the leftmost item
'f'
>>> list(d)                          # list the contents of the deque
['g', 'h', 'i']
>>> d[0]                             # peek at leftmost item
'g'
>>> d[-1]                            # peek at rightmost item
'i'>>> list(reversed(d))                # list the contents of a deque in reverse
['i', 'h', 'g']
>>> 'h' in d                         # search the deque
True
>>> d.extend('jkl')                  # add multiple elements at once
>>> d
deque(['g', 'h', 'i', 'j', 'k', 'l'])
>>> d.rotate(1)                      # right rotation
>>> d
deque(['l', 'g', 'h', 'i', 'j', 'k'])
>>> d.rotate(-1)                     # left rotation
>>> d
deque(['g', 'h', 'i', 'j', 'k', 'l'])>>> deque(reversed(d))               # make a new deque in reverse order
deque(['l', 'k', 'j', 'i', 'h', 'g'])
>>> d.clear()                        # empty the deque
>>> d.pop()                          # cannot pop from an empty deque
Traceback (most recent call last):File "<pyshell#6>", line 1, in -toplevel-d.pop()
IndexError: pop from an empty deque>>> d.extendleft('abc')              # extendleft() reverses the input order
>>> d
deque(['c', 'b', 'a'])

namedtuple

namedtuple是继承自tuple的子类。namedtuple创建一个和tuple类似的对象,而且对象拥有可访问的属性。
如果要用坐标和半径表示一个圆,也可以用namedtuple定义:

# namedtuple('名称', [属性list]):
Circle = namedtuple('Circle', ['x', 'y', 'r'])from collections import namedtuple# 定义一个namedtuple类型User,并包含name,sex和age属性。
User = namedtuple('User', ['name', 'sex', 'age'])# 创建一个User对象
user = User(name='kongxx', sex='male', age=21)# 也可以通过一个list来创建一个User对象,这里注意需要使用"_make"方法
user = User._make(['kongxx', 'male', 21])print user
# User(name='user1', sex='male', age=21)# 获取用户的属性
print user.name
print user.sex
print user.age# 修改对象属性,注意要使用"_replace"方法
user = user._replace(age=22)
print user
# User(name='user1', sex='male', age=21)# 将User对象转换成字典,注意要使用"_asdict"
print user._asdict()
# OrderedDict([('name', 'kongxx'), ('sex', 'male'), ('age', 22)])

这篇关于Python模块 - Collections的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1140875

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',

Jenkins构建Maven聚合工程,指定构建子模块

一、设置单独编译构建子模块 配置: 1、Root POM指向父pom.xml 2、Goals and options指定构建模块的参数: mvn -pl project1/project1-son -am clean package 单独构建project1-son项目以及它所依赖的其它项目。 说明: mvn clean package -pl 父级模块名/子模块名 -am参数

寻迹模块TCRT5000的应用原理和功能实现(基于STM32)

目录 概述 1 认识TCRT5000 1.1 模块介绍 1.2 电气特性 2 系统应用 2.1 系统架构 2.2 STM32Cube创建工程 3 功能实现 3.1 代码实现 3.2 源代码文件 4 功能测试 4.1 检测黑线状态 4.2 未检测黑线状态 概述 本文主要介绍TCRT5000模块的使用原理,包括该模块的硬件实现方式,电路实现原理,还使用STM32类