代码随想录刷题day23丨39. 组合总和,40.组合总和II, 131.分割回文串

2024-09-05 19:28

本文主要是介绍代码随想录刷题day23丨39. 组合总和,40.组合总和II, 131.分割回文串,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码随想录刷题day23丨39. 组合总和,40.组合总和II, 131.分割回文串

1.题目

1.1组合总和

  • 题目链接:39. 组合总和 - 力扣(LeetCode)

    在这里插入图片描述

  • 视频讲解:带你学透回溯算法-组合总和(对应「leetcode」力扣题目:39.组合总和)| 回溯法精讲!_哔哩哔哩_bilibili

  • 文档讲解:https://programmercarl.com/0039.%E7%BB%84%E5%90%88%E6%80%BB%E5%92%8C.html

  • 解题思路:回溯

    • 本题搜索的过程抽象成树形结构如下:

      在这里插入图片描述

    • 注意图中叶子节点的返回条件,因为本题没有组合数量要求,仅仅是总和的限制,所以递归没有层数的限制,只要选取的元素总和超过target,就返回!

    • 回溯三部曲

      • 递归函数参数

        List<Integer> path = new ArrayList<>();
        List<List<Integer>> result = new ArrayList<>();
        void backtracking(int[] candidates,int target,int sum,int startIndex)
        
      • 递归终止条件

        if(sum > target){return;
        }
        if(sum == target){result.add(new ArrayList<>(path));return;
        }
        
      • 单层搜索的逻辑

        for(int i = startIndex;i < candidates.length;i++){path.add(candidates[i]);sum += candidates[i];backtracking(candidates,target,sum,i);sum -= candidates[i];path.remove(path.size() -1);
        }
        
  • 代码:

    class Solution {List<Integer> path = new ArrayList<>();List<List<Integer>> result = new ArrayList<>();public List<List<Integer>> combinationSum(int[] candidates, int target) {backtracking(candidates,target,0,0);return result;}void backtracking(int[] candidates,int target,int sum,int startIndex){if(sum > target){return;}if(sum == target){result.add(new ArrayList<>(path));return;}for(int i = startIndex;i < candidates.length;i++){path.add(candidates[i]);sum += candidates[i];backtracking(candidates,target,sum,i);sum -= candidates[i];path.remove(path.size() -1);}}
    }
    
    • 剪枝优化

      class Solution {List<Integer> path = new ArrayList<>();List<List<Integer>> result = new ArrayList<>();public List<List<Integer>> combinationSum(int[] candidates, int target) {Arrays.sort(candidates); // 先进行排序backtracking(candidates,target,0,0);return result;}void backtracking(int[] candidates,int target,int sum,int startIndex){if(sum > target){return;}if(sum == target){result.add(new ArrayList<>(path));return;}for(int i = startIndex;i < candidates.length;i++){// 如果 sum + candidates[i] > target 就终止遍历if (sum + candidates[i] > target) break;path.add(candidates[i]);sum += candidates[i];backtracking(candidates,target,sum,i);sum -= candidates[i];path.remove(path.size() -1);}}
      }
      
  • 总结:

    • 在求和问题中,排序之后加剪枝是常见的套路!

1.2组合总和II

  • 题目链接:40. 组合总和 II - 力扣(LeetCode)

    在这里插入图片描述

  • 视频讲解:回溯算法中的去重,树层去重树枝去重,你弄清楚了没?| LeetCode:40.组合总和II_哔哩哔哩_bilibili

  • 文档讲解:https://programmercarl.com/0040.%E7%BB%84%E5%90%88%E6%80%BB%E5%92%8CII.html

  • 解题思路:回溯

    • 集合(数组candidates)有重复元素,但还不能有重复的组合

    • 我们要去重的是同一树层上的“使用过”,同一树枝上的都是一个组合里的元素,不用去重

    • 强调一下,树层去重的话,需要对数组排序!

    • 选择过程树形结构如图所示:

      在这里插入图片描述

  • 代码:

    class Solution {List<Integer> path = new ArrayList<>();List<List<Integer>> result = new ArrayList<>();public List<List<Integer>> combinationSum2(int[] candidates, int target) {Arrays.sort(candidates);  // 先排序backtracking(candidates, target, 0, 0);return result;}void backtracking(int[] candidates, int target, int sum, int startIndex) {if (sum > target) {return;}if (sum == target) {result.add(new ArrayList<>(path));return;}for (int i = startIndex; i < candidates.length; i++) {// 跳过相同的元素,避免产生重复组合if (i > startIndex && candidates[i] == candidates[i - 1]) {continue;}// 如果当前元素加上sum大于目标值,则不继续遍历if (sum + candidates[i] > target) {break;}path.add(candidates[i]);sum += candidates[i];backtracking(candidates, target, sum, i+1);sum -= candidates[i];path.remove(path.size() - 1);}}
    }
    
  • 总结:

    • 直接用startIndex来去重

1.3分割回文串

  • 题目链接:131. 分割回文串 - 力扣(LeetCode)

    在这里插入图片描述

  • 视频讲解:带你学透回溯算法-分割回文串(对应力扣题目:131.分割回文串)| 回溯法精讲!_哔哩哔哩_bilibili

  • 文档讲解:https://programmercarl.com/0131.%E5%88%86%E5%89%B2%E5%9B%9E%E6%96%87%E4%B8%B2.html

  • 解题思路:回溯

    • 本题涉及到两个关键问题:

      • 切割问题,有不同的切割方式
      • 判断回文
    • 回文串是向前和向后读都相同的字符串。

    • 我们来分析一下切割,其实切割问题类似组合问题

      • 例如对于字符串abcdef:
        • 组合问题:选取一个a之后,在bcdef中再去选取第二个,选取b之后在cdef中再选取第三个…。
        • 切割问题:切割一个a之后,在bcdef中再去切割第二段,切割b之后在cdef中再切割第三段…。
    • 所以切割问题,也可以抽象为一棵树形结构,如图:

      在这里插入图片描述

    • 递归用来纵向遍历,for循环用来横向遍历,切割线(就是图中的红线)切割到字符串的结尾位置,说明找到了一个切割方法。

    • 此时可以发现,切割问题的回溯搜索的过程和组合问题的回溯搜索的过程是差不多的。

    • 回溯三部曲

      • 递归函数参数

        List<String> path = new ArrayList<>();
        List<List<String>> result = new ArrayList<>();
        void backtracking(String s,int startIndex)
        
      • 递归函数终止条件

        if(startIndex == s.length()){ // 递归终止条件:当索引遍历到字符串末尾时result.add(new ArrayList<>(path));// 将当前的分割路径 `path` 加入到 `result` 中return;
        }
        
      • 单层搜索的逻辑

        StringBuilder sb = new StringBuilder();
        for(int i = startIndex;i < s.length();i++){sb.append(s.charAt(i));// 将从 startIndex 开始的字符逐个加入 StringBuilderif(check(sb)){ // 如果当前的子串是回文串path.add(sb.toString());// 将该回文子串加入当前路径backtracking(s,i + 1);// 递归从下一个字符开始path.remove(path.size() -1);// 回溯,移除刚刚加入的回文子串}
        }
        
  • 代码:

    class Solution {List<String> path = new ArrayList<>();List<List<String>> result = new ArrayList<>();public List<List<String>> partition(String s) {backtracking(s,0);// 开始进行回溯,从索引0开始return result;// 返回最终的所有分割结果}void backtracking(String s,int startIndex){if(startIndex == s.length()){ // 递归终止条件:当索引遍历到字符串末尾时result.add(new ArrayList<>(path));// 将当前的分割路径 `path` 加入到 `result` 中return;}StringBuilder sb = new StringBuilder();for(int i = startIndex;i < s.length();i++){sb.append(s.charAt(i));// 将从 startIndex 开始的字符逐个加入 StringBuilderif(check(sb)){ // 如果当前的子串是回文串path.add(sb.toString());// 将该回文子串加入当前路径backtracking(s,i + 1);// 递归从下一个字符开始path.remove(path.size() -1);// 回溯,移除刚刚加入的回文子串}}}//检查是否是回文private boolean check(StringBuilder sb){for(int i = 0;i < sb.length()/2;i++){if(sb.charAt(i) != sb.charAt(sb.length() - 1 - i)){ // 检查首尾字符是否相等return false;}}return true;}
    }
    
  • 总结:

    • 切割线切到了字符串最后面,说明找到了一种切割方法,此时就是本层递归的终止条件。
    • 那么在代码里什么是切割线呢?
      • 在处理组合问题的时候,递归参数需要传入startIndex,表示下一轮递归遍历的起始位置,这个startIndex就是切割线。
    • 在递归循环中如何截取子串呢?
      • 在for循环中,我们 定义了起始位置startIndex,那么 [startIndex, i] 就是要截取的子串。
      • 首先判断这个子串是不是回文,如果是回文,就加入在path中,path用来记录切割过的回文子串。
      • 注意切割过的位置,不能重复切割,所以,backtracking(s, i + 1); 传入下一层的起始位置为i + 1
    • 如何判断一个字符串是否是回文?
      • 可以使用双指针法,一个指针从前向后,一个指针从后向前,如果前后指针所指向的元素是相等的,就是回文字符串了。
    • 本题有如下几个难点:
      • 切割问题可以抽象为组合问题
      • 如何模拟那些切割线
      • 切割问题中递归如何终止
      • 在递归循环中如何截取子串
      • 如何判断回文

这篇关于代码随想录刷题day23丨39. 组合总和,40.组合总和II, 131.分割回文串的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139850

相关文章

hdu4869(逆元+求组合数)

//输入n,m,n表示翻牌的次数,m表示牌的数目,求经过n次操作后共有几种状态#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#includ

csu1328(近似回文串)

题意:求近似回文串的最大长度,串长度为1000。 解题思路:以某点为中心,向左右两边扩展,注意奇偶分开讨论,暴力解即可。时间复杂度O(n^2); 代码如下: #include<iostream>#include<algorithm>#include<stdio.h>#include<math.h>#include<cstring>#include<string>#inclu

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

AI基础 L9 Local Search II 局部搜索

Local Beam search 对于当前的所有k个状态,生成它们的所有可能后继状态。 检查生成的后继状态中是否有任何状态是解决方案。 如果所有后继状态都不是解决方案,则从所有后继状态中选择k个最佳状态。 当达到预设的迭代次数或满足某个终止条件时,算法停止。 — Choose k successors randomly, biased towards good ones — Close

代码随想录冲冲冲 Day39 动态规划Part7

198. 打家劫舍 dp数组的意义是在第i位的时候偷的最大钱数是多少 如果nums的size为0 总价值当然就是0 如果nums的size为1 总价值是nums[0] 遍历顺序就是从小到大遍历 之后是递推公式 对于dp[i]的最大价值来说有两种可能 1.偷第i个 那么最大价值就是dp[i-2]+nums[i] 2.不偷第i个 那么价值就是dp[i-1] 之后取这两个的最大值就是d

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

D4代码AC集

贪心问题解决的步骤: (局部贪心能导致全局贪心)    1.确定贪心策略    2.验证贪心策略是否正确 排队接水 #include<bits/stdc++.h>using namespace std;int main(){int w,n,a[32000];cin>>w>>n;for(int i=1;i<=n;i++){cin>>a[i];}sort(a+1,a+n+1);int i=1