Transforms的常见用法

2024-09-05 18:20
文章标签 常见 用法 transforms

本文主要是介绍Transforms的常见用法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 一、封装函数与普通函数的用法区别
    • 二、Image.open()打开图片的格式
    • 三、ToTensor打开图片格式
    • 四、ToTensor使用
    • 五、Normalize归一化使用
    • 六、Resize的使用
    • 七、Compose - Resize 使用
    • 八、RandomCrop() 随机裁剪用法

一、封装函数与普通函数的用法区别

class Person:def __call__(self, name):print("__call__" + "Hello" + name)def hello(self,name):print("hello" + name)person = Person()
person("周杰伦")
person.hello("林俊杰")

运行结果:
在这里插入图片描述
注释:

  • 双斜杠"__"封装的函数【 def __call__(self, name):】,在调用的时候直接加参数就可以使用了
    person("周杰伦")
  • 而直接定义的函数,则需要通过 “.” +函数名来进行使用,如person.hello("林俊杰")

二、Image.open()打开图片的格式

from PIL import Image
from torch.utils.tensorboard import SummaryWriterwriter = SummaryWriter("logs")
img = Image.open('Dataset/train/ants/0013035.jpg')
print(img)

运行结果:

在这里插入图片描述
因此可以知道 Image.open()打开图片的格式为PIL形

三、ToTensor打开图片格式

from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision.transforms import transformswriter = SummaryWriter("logs")
img = Image.open('Dataset/train/ants/0013035.jpg')trans_totensor = transforms.ToTensor()
img_tensor = trans_totensor(img)
print(img_tensor)

运行结果:
在这里插入图片描述
注:可以看到最终得到的是 tensor 形

四、ToTensor使用

from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision.transforms import transformswriter = SummaryWriter("logs")
img = Image.open('Dataset/train/ants/0013035.jpg')trans_totensor = transforms.ToTensor()
img_tensor = trans_totensor(img)
writer.add_image("ToTensor",img_tensor)
writer.close()

在终端输入 tensorboard --logdir=logs

得到链接
在这里插入图片描述
点开即可查看照片
在这里插入图片描述

五、Normalize归一化使用

归一化的计算方式:output[channel] = (input[channel] - mean[channel]) / std[channel]

from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision.transforms import transformswriter = SummaryWriter("logs")
img = Image.open('Dataset/train/ants/0013035.jpg')trans_totensor = transforms.ToTensor()
img_tensor = trans_totensor(img)
writer.add_image("ToTensor",img_tensor)
writer.close()#Normalize
print(img_tensor[0][0][0]) #将图片的第一层,第一行,第一列将他输出出来
trans_norm = transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
img_norm = trans_norm(img_tensor)
print(img_norm[0][0][0]) #经过归一化输出的第一层,第一行,第一列将他输出出来writer.close()

运行结果:
在这里插入图片描述
注:最开始是 0.31 ,经过变换之后就变成了 -0.37

将上面的代码进行输出一下

writer.add_image("Normalize",img_norm)

在这里插入图片描述
可以看出图片的改变

六、Resize的使用

先观察Resize的输出类型

from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision.transforms import transformswriter = SummaryWriter("logs")
img = Image.open('Dataset/train/ants/0013035.jpg')trans_totensor = transforms.ToTensor()
img_tensor = trans_totensor(img)
writer.add_image("ToTensor",img_tensor)
writer.close()#Resize
print(img.size)
trans_resize = transforms.Resize((512,512))
img_resize = trans_resize(img)
print(img_resize)writer.close()

运行结果:
在这里插入图片描述
可以知道Resize的输出结果是 PIL形,并且尺寸从(768,512) 变成了现在的 size = 512 x 512

观察图片

from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision.transforms import transformswriter = SummaryWriter("logs")
img = Image.open('Dataset/train/ants/0013035.jpg')trans_totensor = transforms.ToTensor()
img_tensor = trans_totensor(img)
writer.add_image("ToTensor",img_tensor)
writer.close()#Resize
print(img.size)
trans_resize = transforms.Resize((512,512))#img PIL形 --> 经过resize -> img_resize PIL形
img_resize = trans_resize(img)# img_resize PIL形 -> 经过totensor -> img_resize tensor形 ->进行图像的输出
img_resize = trans_totensor(img_resize)#图片写出
writer.add_image("Resize",img_resize,0)print(img_resize)writer.close()

运行结果:
在这里插入图片描述
注:可以看出图片经过了裁剪

七、Compose - Resize 使用

如果给Resize()括号中写一个整数形int,那么图片不会改变高和宽,而是整体进行一个等比缩放
如:trans_resize_2 = transforms.Resize(512)

from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision.transforms import transformswriter = SummaryWriter("logs")
img = Image.open('Dataset/train/ants/0013035.jpg')trans_totensor = transforms.ToTensor()
img_tensor = trans_totensor(img)
writer.add_image("ToTensor",img_tensor)
writer.close()#Resize
print(img.size)
trans_resize = transforms.Resize((512,512))#img PIL形 --> 经过resize -> img_resize PIL形
img_resize = trans_resize(img)# img_resize PIL形 -> 经过totensor -> img_resize tensor形 ->进行图像的输出
img_resize = trans_totensor(img_resize)#图片写出
writer.add_image("Resize",img_resize,0)print(img_resize)writer.close()#Compose - Resize
trans_resize_2 = transforms.Resize(512)# 创建一个transforms.Compose对象,它将多个图像变换操作组合成一个序列
tran_compose = transforms.Compose([trans_resize_2,trans_totensor])img_resize_2 = tran_compose(img)# "Resize"是图像的标签,img_resize_2是经过变换的图像,1是图像在TensorBoard中的步数(step)
writer.add_image("Resize",img_resize_2,1)

注:Compose方法要求前面的输出做后面的输入,比方说tran_compose = transforms.Compose([trans_resize_2,trans_totensor]),前面的输出类型是PIL形,故要求后面的输入也要是PIL形,所以可以直接使用compose
但是如果tran_compose = transforms.Compose([trans_totensor,trans_resize_2]),也就是前面的输出是totensor形,但是后面的输入要求PIL形,这样子进行compose的话就会产生报错。

运行结果:
在这里插入图片描述

八、RandomCrop() 随机裁剪用法

from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision.transforms import transformswriter = SummaryWriter("logs")
img = Image.open('Dataset/train/ants/0013035.jpg')trans_totensor = transforms.ToTensor()trans_random = transforms.RandomCrop(512)
trans_compose_2 = transforms.Compose([trans_random,trans_totensor])
for i in range(10):img_crop = trans_compose_2(img)writer.add_image("RandomCrop",img_crop, i)
writer.close()

运行结果:
在这里插入图片描述
在这里插入图片描述

自己设置高和宽:

**from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision.transforms import transformswriter = SummaryWriter("logs")
img = Image.open('Dataset/train/ants/0013035.jpg')trans_totensor = transforms.ToTensor()
#设置高为50,宽为100
trans_random = transforms.RandomCrop((50, 100))
trans_compose_2 = transforms.Compose([trans_random,trans_totensor])
for i in range(10):img_crop = trans_compose_2(img)writer.add_image("RandomCrop",img_crop, i)
writer.close()**

运行结果:
在这里插入图片描述

这篇关于Transforms的常见用法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139712

相关文章

解读GC日志中的各项指标用法

《解读GC日志中的各项指标用法》:本文主要介绍GC日志中的各项指标用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、基础 GC 日志格式(以 G1 为例)1. Minor GC 日志2. Full GC 日志二、关键指标解析1. GC 类型与触发原因2. 堆

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

MySQL数据库中ENUM的用法是什么详解

《MySQL数据库中ENUM的用法是什么详解》ENUM是一个字符串对象,用于指定一组预定义的值,并可在创建表时使用,下面:本文主要介绍MySQL数据库中ENUM的用法是什么的相关资料,文中通过代码... 目录mysql 中 ENUM 的用法一、ENUM 的定义与语法二、ENUM 的特点三、ENUM 的用法1

JavaSE正则表达式用法总结大全

《JavaSE正则表达式用法总结大全》正则表达式就是由一些特定的字符组成,代表的是一个规则,:本文主要介绍JavaSE正则表达式用法的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录常用的正则表达式匹配符正则表China编程达式常用的类Pattern类Matcher类PatternSynta

MySQL之InnoDB存储引擎中的索引用法及说明

《MySQL之InnoDB存储引擎中的索引用法及说明》:本文主要介绍MySQL之InnoDB存储引擎中的索引用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录1、背景2、准备3、正篇【1】存储用户记录的数据页【2】存储目录项记录的数据页【3】聚簇索引【4】二

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

Mysql中isnull,ifnull,nullif的用法及语义详解

《Mysql中isnull,ifnull,nullif的用法及语义详解》MySQL中ISNULL判断表达式是否为NULL,IFNULL替换NULL值为指定值,NULLIF在表达式相等时返回NULL,用... 目录mysql中isnull,ifnull,nullif的用法1. ISNULL(expr) → 判

Mysql常见的SQL语句格式及实用技巧

《Mysql常见的SQL语句格式及实用技巧》本文系统梳理MySQL常见SQL语句格式,涵盖数据库与表的创建、删除、修改、查询操作,以及记录增删改查和多表关联等高级查询,同时提供索引优化、事务处理、临时... 目录一、常用语法汇总二、示例1.数据库操作2.表操作3.记录操作 4.高级查询三、实用技巧一、常用语