后缀数组 - 求最长回文子串 + 模板题 --- ural 1297

2024-09-05 17:32

本文主要是介绍后缀数组 - 求最长回文子串 + 模板题 --- ural 1297,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1297. Palindrome

Time Limit: 1.0 second
Memory Limit: 16 MB
The “U.S. Robots” HQ has just received a rather alarming anonymous letter. It states that the agent from the competing «Robots Unlimited» has infiltrated into “U.S. Robotics”. «U.S. Robots» security service would have already started an undercover operation to establish the agent’s identity, but, fortunately, the letter describes communication channel the agent uses. He will publish articles containing stolen data to the “Solaris” almanac. Obviously, he will obfuscate the data, so “Robots Unlimited” will have to use a special descrambler (“Robots Unlimited” part number NPRx8086, specifications are kept secret).
Having read the letter, the “U.S. Robots” president recalled having hired the “Robots Unlimited” ex-employee John Pupkin. President knows he can trust John, because John is still angry at being mistreated by “Robots Unlimited”. Unfortunately, he was fired just before his team has finished work on the NPRx8086 design.
So, the president has assigned the task of agent’s message interception to John. At first, John felt rather embarrassed, because revealing the hidden message isn’t any easier than finding a needle in a haystack. However, after he struggled the problem for a while, he remembered that the design of NPRx8086 was still incomplete. “Robots Unlimited” fired John when he was working on a specific module, the text direction detector. Nobody else could finish that module, so the descrambler will choose the text scanning direction at random. To ensure the correct descrambling of the message by NPRx8086, agent must encode the information in such a way that the resulting secret message reads the same both forwards and backwards.
In addition, it is reasonable to assume that the agent will be sending a very long message, so John has simply to find the longest message satisfying the mentioned property.
Your task is to help John Pupkin by writing a program to find the secret message in the text of a given article. As NPRx8086 ignores white spaces and punctuation marks, John will remove them from the text before feeding it into the program.

Input

The input consists of a single line, which contains a string of Latin alphabet letters (no other characters will appear in the string). String length will not exceed 1000 characters.

Output

The longest substring with mentioned property. If there are several such strings you should output the first of them.

Sample

input
ThesampletextthatcouldbereadedthesameinbothordersArozaupalanalapuazorA
output
ArozaupalanalapuazorA 

 

Mean: 

 给你一个字符串,让你输出字符串的最长回文子串。

analyse:

求最长回文串有很多方法,最经典的莫过于Manacher算法,时间复杂度O(n)。

这里就主要介绍一下用后缀数组的方法。

用后缀数组怎么求回文串呢?

原理和上一篇求最长公共子序列一样,我们把s1反转后接到s1后面得到S串,那么s1的最长回文串必定存在于S中,我们只需要求一下S的height数组,然后寻找来自于不同的两个串的height[i]的最大值,然后记录一下开始位置和长度,最后输出即可。

Time complexity:O(nlogn)

 

Source code:

 Suffix Arrays:

/*
* this code is made by crazyacking
* Verdict: Accepted
* Submission Date: 2015-05-09-21.22
* Time: 0MS
* Memory: 137KB
*/
#include <queue>
#include <cstdio>
#include <set>
#include <string>
#include <stack>
#include <cmath>
#include <climits>
#include <map>
#include <cstdlib>
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
#define  LL long long
#define  ULL unsigned long long
using namespace std;
const int MAXN = 2015;
//以下为倍增算法求后缀数组
int wa [ MAXN ], wb [ MAXN ], wv [ MAXN ], Ws [ MAXN ];
int cmp( int * r , int a , int b , int l)
{ return r [ a ] == r [b ] && r [ a + l ] == r [b + l ];}
/**< 传入参数:str,sa,len+1,ASCII_MAX+1 */
void da( const char * r , int * sa , int n , int m)
{
      int i , j ,p , * x = wa , * y = wb , * t;
      for( i = 0; i < m; i ++) Ws [ i ] = 0;
      for( i = 0; i <n; i ++) Ws [ x [ i ] = r [ i ]] ++;
      for( i = 1; i < m; i ++) Ws [ i ] += Ws [ i - 1 ];
      for( i =n - 1; i >= 0; i --) sa [ -- Ws [ x [ i ]]] = i;
      for( j = 1 ,p = 1; p <n; j *= 2 , m =p)
      {
            for(p = 0 , i =n - j; i <n; i ++) y [p ++ ] = i;
            for( i = 0; i <n; i ++) if( sa [ i ] >= j) y [p ++ ] = sa [ i ] - j;
            for( i = 0; i <n; i ++) wv [ i ] = x [ y [ i ]];
            for( i = 0; i < m; i ++) Ws [ i ] = 0;
            for( i = 0; i <n; i ++) Ws [ wv [ i ]] ++;
            for( i = 1; i < m; i ++) Ws [ i ] += Ws [ i - 1 ];
            for( i =n - 1; i >= 0; i --) sa [ -- Ws [ wv [ i ]]] = y [ i ];
            for( t = x , x = y , y = t ,p = 1 , x [ sa [ 0 ]] = 0 , i = 1; i <n; i ++)
                  x [ sa [ i ]] = cmp( y , sa [ i - 1 ], sa [ i ], j) ?p - 1 :p ++;
      }
      return;
}
int sa [ MAXN ], Rank [ MAXN ], height [ MAXN ];
/**< str,sa,len */
void calheight( const char * r , int * sa , int n)
{
      int i , j , k = 0;
      for( i = 1; i <=n; i ++) Rank [ sa [ i ]] = i;
      for( i = 0; i <n; height [ Rank [ i ++ ]] = k)
            for( k ? k --: 0 , j = sa [ Rank [ i ] - 1 ]; r [ i + k ] == r [ j + k ]; k ++);
      // Unified
      for( int i =n; i >= 1; -- i) ++ sa [ i ], Rank [ i ] = Rank [ i - 1 ];
}

char s1 [ MAXN ], s2 [ MAXN ];
int main()
{
      while( ~ scanf( "%s" , s1))
      {
            int l1 = strlen( s1);
            strcat( s1 , "{");
            strcpy( s2 , s1);
            for( int i = 0; i < l1; ++ i) s1 [ i + l1 + 1 ] = s2 [ l1 - i - 1 ];
            int len = strlen( s1);
            da( s1 , sa , len + 1 , 130);
            calheight( s1 , sa , len);
            int sta = 0 , maxLen = 1 , l , r;
            for( int i = 1; i <= len; ++ i)
            {
                  l = min( sa [ i ] - 1 , sa [ i - 1 ] - 1);
                  r = max( sa [ i ] - 1 , sa [ i - 1 ] - 1);
                  if(( l < l1 && r > l1) && ( len - r == l + height [ i ]))
                  {
                        if( height [ i ] > maxLen)
                              maxLen = height [ i ], sta = l;
                        else if( height [ i ] == maxLen)
                              sta = min( sta , l);
                  }
            }
            for( int i = sta , j = 0; j < maxLen; ++ i , ++ j)
                printf( "%c" , s1 [ i ]);
            puts( "");
      }
      return 0;
}

 

 Manacher:

/*
* this code is made by crazyacking
* Verdict: Accepted
* Submission Date: 2015-09-12-15.41
* Time: 0MS
* Memory: 137KB
*/
#include <queue>
#include <cstdio>
#include <set>
#include <string>
#include <stack>
#include <cmath>
#include <climits>
#include <map>
#include <cstdlib>
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
#define max(a,b) (a>b?a:b)
using namespace std;
typedef long long( LL);
typedef unsigned long long( ULL);
const double eps( 1e-8);

/** O(n)内求出所有回文串
*原串 :abaaba
*Ma串 :.,a,b,a,a,b,a,
*Mp[i]:Ma串中,以字符Ma[i]为中心的最长回文子串的半径长度(包括Ma[i],也就是把回文串对折后的长度).
****经过对原串扩展处理后,将奇数串的情况也合并到了偶数的情况(不需要考虑奇数串)
*/
const int MAXN = 1050;
char Ma [ MAXN * 2 ],s [ MAXN ];
int Mp [ MAXN * 2 ], Mplen;
void Manacher( char s [], int len)
{
      int le = 0;
      Ma [ le ++ ] = '.';
      Ma [ le ++ ] = ',';
      for( int i = 0; i < len; ++ i)
      {
            Ma [ le ++ ] =s [ i ];
            Ma [ le ++ ] = ',';
      }
      Mplen = le;
      Ma [ le ] = 0;
      int pnow = 0 , pid = 0;
      for( int i = 1; i < le; ++ i)
      {
            if( pnow > i)
                  Mp [ i ] = min( Mp [ 2 * pid - i ], pnow - i);
            else
                  Mp [ i ] = 1;
            for(; Ma [ i - Mp [ i ]] == Ma [ i + Mp [ i ]]; ++ Mp [ i ]);
            if( i + Mp [ i ] > pnow)
            {
                  pnow = i + Mp [ i ];
                  pid = i;
            }
      }
}

int main()
{
      ios_base :: sync_with_stdio( false);
      cin . tie( 0);
      while( ~ scanf( "%s" ,s))
      {
            Manacher(s , strlen(s));
            int maxLen = 1 , idx = 0;
            for( int i = 0; i < Mplen; ++ i)
            {
                  if( Mp [ i ] > maxLen)
                        maxLen = Mp [ i ], idx = i;
            }
            for( int i =( idx - maxLen + 1) / 2 , j = 0; j < maxLen - 1; ++ i , ++ j)
                  printf( "%c" ,s [ i ]);
            puts( "");
//            cout<<maxLen-1<<endl;
      }
      return 0;
}

 

这篇关于后缀数组 - 求最长回文子串 + 模板题 --- ural 1297的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139608

相关文章

hdu2241(二分+合并数组)

题意:判断是否存在a+b+c = x,a,b,c分别属于集合A,B,C 如果用暴力会超时,所以这里用到了数组合并,将b,c数组合并成d,d数组存的是b,c数组元素的和,然后对d数组进行二分就可以了 代码如下(附注释): #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<que

poj3468(线段树成段更新模板题)

题意:包括两个操作:1、将[a.b]上的数字加上v;2、查询区间[a,b]上的和 下面的介绍是下解题思路: 首先介绍  lazy-tag思想:用一个变量记录每一个线段树节点的变化值,当这部分线段的一致性被破坏我们就将这个变化值传递给子区间,大大增加了线段树的效率。 比如现在需要对[a,b]区间值进行加c操作,那么就从根节点[1,n]开始调用update函数进行操作,如果刚好执行到一个子节点,

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

poj2406(连续重复子串)

题意:判断串s是不是str^n,求str的最大长度。 解题思路:kmp可解,后缀数组的倍增算法超时。next[i]表示在第i位匹配失败后,自动跳转到next[i],所以1到next[n]这个串 等于 n-next[n]+1到n这个串。 代码如下; #include<iostream>#include<algorithm>#include<stdio.h>#include<math.

poj3261(可重复k次的最长子串)

题意:可重复k次的最长子串 解题思路:求所有区间[x,x+k-1]中的最小值的最大值。求sa时间复杂度Nlog(N),求最值时间复杂度N*N,但实际复杂度很低。题目数据也比较水,不然估计过不了。 代码入下: #include<iostream>#include<algorithm>#include<stdio.h>#include<math.h>#include<cstring

spoj705( 求不相同的子串个数)

题意:求串s的不同子串的个数 解题思路:任何子串都是某个后缀的前缀,对n个后缀排序,求某个后缀的前缀的个数,减去height[i](第i个后缀与第i-1 个后缀有相同的height[i]个前缀)。 代码如下: #include<iostream>#include<algorithm>#include<stdio.h>#include<math.h>#include<cstrin

csu1328(近似回文串)

题意:求近似回文串的最大长度,串长度为1000。 解题思路:以某点为中心,向左右两边扩展,注意奇偶分开讨论,暴力解即可。时间复杂度O(n^2); 代码如下: #include<iostream>#include<algorithm>#include<stdio.h>#include<math.h>#include<cstring>#include<string>#inclu

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

hdu 1166 敌兵布阵(树状数组 or 线段树)

题意是求一个线段的和,在线段上可以进行加减的修改。 树状数组的模板题。 代码: #include <stdio.h>#include <string.h>const int maxn = 50000 + 1;int c[maxn];int n;int lowbit(int x){return x & -x;}void add(int x, int num){while