[置顶]后缀数组(suffix array)详解

2024-09-05 16:32

本文主要是介绍[置顶]后缀数组(suffix array)详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面

在字符串处理当中,后缀树和后缀数组都是非常有力的工具。

其中后缀树大家了解得比较多,关于后缀数组则很少见于国内的资料。

其实后缀数组是后缀树的一个非常精巧的替代品,它比后缀树容易编程实现,

能够实现后缀树的很多功能而时间复杂度也不太逊色,并且,它比后缀树所占用的空间小很多。

可以说,在信息学竞赛中后缀数组比后缀树要更为实用!

因此在本文中笔者想介绍一下后缀数组的基本概念、构造方法,

以及配合后缀数组的最长公共前缀数组的构造方法,最后结合一些例子谈谈后缀数组的应用。

What Is Suffix Array?

学习后缀数组需要认识几个概念:

子串

  字符串S的子串r[i..j],i<=j,表示S串中从i到j这一段,就是顺次排列r[i],r[i+1],...,r[j]形成的子串。

后缀

  后缀是指从某个位置 i 开始到整个串末尾结束的一个特殊子串。字符串r的从第i个字符开始的后缀表示为Suffix(i),

    也就是Suffix(i)=S[i...len(S)-1] 。

后缀数组(SA[i]存放排名第i大的后缀首字符下标)

  后缀数组 SA 是一个一维数组,它保存1..n 的某个排列SA[1] ,SA[2] ,...,SA[n] ,

  并且保证Suffix(SA[i])<Suffix(SA[i+1]), 1<=i<n 。

    也就是将S的n个后缀从小到大进行排序之后把排好序的后缀的开头位置顺次放入SA 中。

名次数组(rank[i]存放suffix(i)的优先级)

  名次数组 Rank[i] 保存的是 Suffix(i) 在所有后缀中从小到大排列的“名次”

   注:这个是排序的关键字~(这句话是我们排序的重点)

 

(我的理解):

sa[i]:保存的是S字符串的所有后缀在以字典序排序后,排在第i名的字符串在原来子串中的位置。

rank[i]:保存的是S字符串的所有后缀在以字典序排序后,原来的第i名现在排第几。

简单的说,后缀数组(SA)是“排第几的是谁?”,名次数组(RANK)是“你排第几?”

容易看出,后缀数组和名次数组为互逆运算。我们只要算出了sa数组,就可以在O(n)的时间复杂度内算出rank数组。

height数组:height[i]保存的是suffix(i)和suffix(i-1)的最长公共前缀的长度。也就是排名相邻的两个后缀的最长公共前缀。

 

How To Build Suffix Array?

要构造Suffix Array,主要就是构造sa数组,rank数组和height数组。

首先来看一下如何构造sa数组:

构造sa数组的方法有三种:

1)倍增算法:O(nlongn)

2)DC3算法:O(n)

3)skew算法(不常用)

 

这里主要讲一下DC3算法

DC3算法是一个优秀的线性算法!

很多人都认为DC3算法很复杂,其实也没多复杂,代码也就40多行,只是for循环多了点。

DC3算法:

1) 先将后缀分成两部分,然后对第一部分的后缀排序。 

  字符的编号从0开始。

  将后缀分成两部分:

    第一部分是后缀k(k模3不等于0)

    第二部分是后缀k(k模3等于0)

2) 利用(1)的结果,对第二部分的后缀排序。
3) 将(1)和(2)的结果合并,即完成对所有后缀排序。

于是求出了所有后缀的排序,有什么用呢?主要是用于求它们之间的最长公共前缀(Longest Common Prefix,LCP)。

求出sa数组之后,根据rank[sa[i]]=i,rank数组自然也就能够在O(n)的时间内求出。

那我们如何快速的求出height数组呢?

令LCP(i,j)为第i小的后缀和第j小的后缀(也就是Suffix(SA[i])和Suffix(SA[j]))的最长公共前缀的长度,则有如下两个性质: 

    1. 对任意i<=k<=j,有LCP(i,j) = min(LCP(i,k),LCP(k,j))

    2. LCP(i,j)=min(i<k<=j)(LCP(k-1,k))

令height[i]=LCP(i-1,i),即height[i]代表第i小的后缀与第i-1小的后缀的LCP,则求LCP(i,j)就等于求height[i+1]~height[j]之间的RMQ,套用RMQ算法就可以了,复杂度是预处理O(nlogn),查询O(1).

这样一来我们就将height数组也求出来了。

 

下面用草稿纸来模拟一遍:

例如:
aabaaaab


总共有n=8个后缀:

1: aabaaaab

这篇关于[置顶]后缀数组(suffix array)详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139476

相关文章

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

mac中资源库在哪? macOS资源库文件夹详解

《mac中资源库在哪?macOS资源库文件夹详解》经常使用Mac电脑的用户会发现,找不到Mac电脑的资源库,我们怎么打开资源库并使用呢?下面我们就来看看macOS资源库文件夹详解... 在 MACOS 系统中,「资源库」文件夹是用来存放操作系统和 App 设置的核心位置。虽然平时我们很少直接跟它打交道,但了

关于Maven中pom.xml文件配置详解

《关于Maven中pom.xml文件配置详解》pom.xml是Maven项目的核心配置文件,它描述了项目的结构、依赖关系、构建配置等信息,通过合理配置pom.xml,可以提高项目的可维护性和构建效率... 目录1. POM文件的基本结构1.1 项目基本信息2. 项目属性2.1 引用属性3. 项目依赖4. 构

Rust 数据类型详解

《Rust数据类型详解》本文介绍了Rust编程语言中的标量类型和复合类型,标量类型包括整数、浮点数、布尔和字符,而复合类型则包括元组和数组,标量类型用于表示单个值,具有不同的表示和范围,本文介绍的非... 目录一、标量类型(Scalar Types)1. 整数类型(Integer Types)1.1 整数字

Java操作ElasticSearch的实例详解

《Java操作ElasticSearch的实例详解》Elasticsearch是一个分布式的搜索和分析引擎,广泛用于全文搜索、日志分析等场景,本文将介绍如何在Java应用中使用Elastics... 目录简介环境准备1. 安装 Elasticsearch2. 添加依赖连接 Elasticsearch1. 创

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

Python 中 requests 与 aiohttp 在实际项目中的选择策略详解

《Python中requests与aiohttp在实际项目中的选择策略详解》本文主要介绍了Python爬虫开发中常用的两个库requests和aiohttp的使用方法及其区别,通过实际项目案... 目录一、requests 库二、aiohttp 库三、requests 和 aiohttp 的比较四、requ

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情