本文主要是介绍[置顶]后缀数组(suffix array)详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
写在前面在字符串处理当中,后缀树和后缀数组都是非常有力的工具。
其中后缀树大家了解得比较多,关于后缀数组则很少见于国内的资料。
其实后缀数组是后缀树的一个非常精巧的替代品,它比后缀树容易编程实现,
能够实现后缀树的很多功能而时间复杂度也不太逊色,并且,它比后缀树所占用的空间小很多。
可以说,在信息学竞赛中后缀数组比后缀树要更为实用!
因此在本文中笔者想介绍一下后缀数组的基本概念、构造方法,
以及配合后缀数组的最长公共前缀数组的构造方法,最后结合一些例子谈谈后缀数组的应用。
What Is Suffix Array?
学习后缀数组需要认识几个概念:
子串
字符串S的子串r[i..j],i<=j,表示S串中从i到j这一段,就是顺次排列r[i],r[i+1],...,r[j]形成的子串。
后缀
后缀是指从某个位置 i 开始到整个串末尾结束的一个特殊子串。字符串r的从第i个字符开始的后缀表示为Suffix(i),
也就是Suffix(i)=S[i...len(S)-1] 。
后缀数组(SA[i]存放排名第i大的后缀首字符下标)
后缀数组 SA 是一个一维数组,它保存1..n 的某个排列SA[1] ,SA[2] ,...,SA[n] ,
并且保证Suffix(SA[i])<Suffix(SA[i+1]), 1<=i<n 。
也就是将S的n个后缀从小到大进行排序之后把排好序的后缀的开头位置顺次放入SA 中。
名次数组(rank[i]存放suffix(i)的优先级)
名次数组 Rank[i] 保存的是 Suffix(i) 在所有后缀中从小到大排列的“名次”
注:这个是排序的关键字~(这句话是我们排序的重点)
(我的理解):
sa[i]:保存的是S字符串的所有后缀在以字典序排序后,排在第i名的字符串在原来子串中的位置。
rank[i]:保存的是S字符串的所有后缀在以字典序排序后,原来的第i名现在排第几。
简单的说,后缀数组(SA)是“排第几的是谁?”,名次数组(RANK)是“你排第几?”。
容易看出,后缀数组和名次数组为互逆运算。我们只要算出了sa数组,就可以在O(n)的时间复杂度内算出rank数组。
height数组:height[i]保存的是suffix(i)和suffix(i-1)的最长公共前缀的长度。也就是排名相邻的两个后缀的最长公共前缀。
How To Build Suffix Array?
要构造Suffix Array,主要就是构造sa数组,rank数组和height数组。
首先来看一下如何构造sa数组:
构造sa数组的方法有三种:
1)倍增算法:O(nlongn)
2)DC3算法:O(n)
3)skew算法(不常用)
这里主要讲一下DC3算法:
DC3算法是一个优秀的线性算法!
很多人都认为DC3算法很复杂,其实也没多复杂,代码也就40多行,只是for循环多了点。
DC3算法:
1) 先将后缀分成两部分,然后对第一部分的后缀排序。
字符的编号从0开始。
将后缀分成两部分:
第一部分是后缀k(k模3不等于0)
第二部分是后缀k(k模3等于0)
2) 利用(1)的结果,对第二部分的后缀排序。
3) 将(1)和(2)的结果合并,即完成对所有后缀排序。
于是求出了所有后缀的排序,有什么用呢?主要是用于求它们之间的最长公共前缀(Longest Common Prefix,LCP)。
求出sa数组之后,根据rank[sa[i]]=i,rank数组自然也就能够在O(n)的时间内求出。
那我们如何快速的求出height数组呢?
令LCP(i,j)为第i小的后缀和第j小的后缀(也就是Suffix(SA[i])和Suffix(SA[j]))的最长公共前缀的长度,则有如下两个性质:
-
对任意i<=k<=j,有LCP(i,j) = min(LCP(i,k),LCP(k,j))
-
LCP(i,j)=min(i<k<=j)(LCP(k-1,k))
-
令height[i]=LCP(i-1,i),即height[i]代表第i小的后缀与第i-1小的后缀的LCP,则求LCP(i,j)就等于求height[i+1]~height[j]之间的RMQ,套用RMQ算法就可以了,复杂度是预处理O(nlogn),查询O(1).
这样一来我们就将height数组也求出来了。
下面用草稿纸来模拟一遍:
例如:
aabaaaab
总共有n=8个后缀:
1: aabaaaab
这篇关于[置顶]后缀数组(suffix array)详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!