[置顶]后缀数组(suffix array)详解

2024-09-05 16:32

本文主要是介绍[置顶]后缀数组(suffix array)详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面

在字符串处理当中,后缀树和后缀数组都是非常有力的工具。

其中后缀树大家了解得比较多,关于后缀数组则很少见于国内的资料。

其实后缀数组是后缀树的一个非常精巧的替代品,它比后缀树容易编程实现,

能够实现后缀树的很多功能而时间复杂度也不太逊色,并且,它比后缀树所占用的空间小很多。

可以说,在信息学竞赛中后缀数组比后缀树要更为实用!

因此在本文中笔者想介绍一下后缀数组的基本概念、构造方法,

以及配合后缀数组的最长公共前缀数组的构造方法,最后结合一些例子谈谈后缀数组的应用。

What Is Suffix Array?

学习后缀数组需要认识几个概念:

子串

  字符串S的子串r[i..j],i<=j,表示S串中从i到j这一段,就是顺次排列r[i],r[i+1],...,r[j]形成的子串。

后缀

  后缀是指从某个位置 i 开始到整个串末尾结束的一个特殊子串。字符串r的从第i个字符开始的后缀表示为Suffix(i),

    也就是Suffix(i)=S[i...len(S)-1] 。

后缀数组(SA[i]存放排名第i大的后缀首字符下标)

  后缀数组 SA 是一个一维数组,它保存1..n 的某个排列SA[1] ,SA[2] ,...,SA[n] ,

  并且保证Suffix(SA[i])<Suffix(SA[i+1]), 1<=i<n 。

    也就是将S的n个后缀从小到大进行排序之后把排好序的后缀的开头位置顺次放入SA 中。

名次数组(rank[i]存放suffix(i)的优先级)

  名次数组 Rank[i] 保存的是 Suffix(i) 在所有后缀中从小到大排列的“名次”

   注:这个是排序的关键字~(这句话是我们排序的重点)

 

(我的理解):

sa[i]:保存的是S字符串的所有后缀在以字典序排序后,排在第i名的字符串在原来子串中的位置。

rank[i]:保存的是S字符串的所有后缀在以字典序排序后,原来的第i名现在排第几。

简单的说,后缀数组(SA)是“排第几的是谁?”,名次数组(RANK)是“你排第几?”

容易看出,后缀数组和名次数组为互逆运算。我们只要算出了sa数组,就可以在O(n)的时间复杂度内算出rank数组。

height数组:height[i]保存的是suffix(i)和suffix(i-1)的最长公共前缀的长度。也就是排名相邻的两个后缀的最长公共前缀。

 

How To Build Suffix Array?

要构造Suffix Array,主要就是构造sa数组,rank数组和height数组。

首先来看一下如何构造sa数组:

构造sa数组的方法有三种:

1)倍增算法:O(nlongn)

2)DC3算法:O(n)

3)skew算法(不常用)

 

这里主要讲一下DC3算法

DC3算法是一个优秀的线性算法!

很多人都认为DC3算法很复杂,其实也没多复杂,代码也就40多行,只是for循环多了点。

DC3算法:

1) 先将后缀分成两部分,然后对第一部分的后缀排序。 

  字符的编号从0开始。

  将后缀分成两部分:

    第一部分是后缀k(k模3不等于0)

    第二部分是后缀k(k模3等于0)

2) 利用(1)的结果,对第二部分的后缀排序。
3) 将(1)和(2)的结果合并,即完成对所有后缀排序。

于是求出了所有后缀的排序,有什么用呢?主要是用于求它们之间的最长公共前缀(Longest Common Prefix,LCP)。

求出sa数组之后,根据rank[sa[i]]=i,rank数组自然也就能够在O(n)的时间内求出。

那我们如何快速的求出height数组呢?

令LCP(i,j)为第i小的后缀和第j小的后缀(也就是Suffix(SA[i])和Suffix(SA[j]))的最长公共前缀的长度,则有如下两个性质: 

    1. 对任意i<=k<=j,有LCP(i,j) = min(LCP(i,k),LCP(k,j))

    2. LCP(i,j)=min(i<k<=j)(LCP(k-1,k))

令height[i]=LCP(i-1,i),即height[i]代表第i小的后缀与第i-1小的后缀的LCP,则求LCP(i,j)就等于求height[i+1]~height[j]之间的RMQ,套用RMQ算法就可以了,复杂度是预处理O(nlogn),查询O(1).

这样一来我们就将height数组也求出来了。

 

下面用草稿纸来模拟一遍:

例如:
aabaaaab


总共有n=8个后缀:

1: aabaaaab

这篇关于[置顶]后缀数组(suffix array)详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139476

相关文章

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

java中反射(Reflection)机制举例详解

《java中反射(Reflection)机制举例详解》Java中的反射机制是指Java程序在运行期间可以获取到一个对象的全部信息,:本文主要介绍java中反射(Reflection)机制的相关资料... 目录一、什么是反射?二、反射的用途三、获取Class对象四、Class类型的对象使用场景1五、Class

golang 日志log与logrus示例详解

《golang日志log与logrus示例详解》log是Go语言标准库中一个简单的日志库,本文给大家介绍golang日志log与logrus示例详解,感兴趣的朋友一起看看吧... 目录一、Go 标准库 log 详解1. 功能特点2. 常用函数3. 示例代码4. 优势和局限二、第三方库 logrus 详解1.