八数码问题——HDU 1043

2024-09-05 04:32
文章标签 问题 hdu 数码 1043

本文主要是介绍八数码问题——HDU 1043,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对应杭电题目: 点击打开链接


The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let's call the missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as:
 1  2  3  45  6  7  89 10 11 12
13 14 15  x

where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:
 1  2  3  4     1  2  3  4     1  2  3  4     1  2  3  45  6  7  8     5  6  7  8     5  6  7  8     5  6  7  89  x 10 12     9 10  x 12     9 10 11 12     9 10 11 12
13 14 11 15    13 14 11 15    13 14  x 15    13 14 15  xr->            d->            r->

The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively.

Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and
frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course).

In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three
arrangement.

Input

You will receive, several descriptions of configuration of the 8 puzzle. One description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus 'x'. For example, this puzzle

1 2 3
x 4 6
7 5 8

is described by this list:

1 2 3 x 4 6 7 5 8

Output

You will print to standard output either the word ``unsolvable'', if the puzzle has no solution, or a string consisting entirely of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line. Do not print a blank line between cases.

Sample Input

    
2 3 4 1 5 x 7 6 8

Sample Output

    
ullddrurdllurdruldr
康拓展开判重,反向BFS
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<map>
#include<queue>
#include<stack>
#include<vector>
#include<algorithm>
#include<cstring>
#include<string>
#include<iostream>
const int MAXN=500000+10;
const int MAXNHASH=500000+10;
using namespace std;
typedef int State[9];
State st[MAXN];
int goal[9];
int vis[370000];
int fact[9];
int fa[MAXN];
int dir[MAXN];
int codestart,codeend;
const int dx[]={-1,1,0,0};
const int dy[]={0,0,-1,1};
char cal[5]="durl";void init_lookup_table()
{fact[0]=1;for(int i=1; i<9; i++){fact[i]=fact[i-1]*i;}
}int Code(State &s)
{int code=0;for(int i=0; i<9; i++){int cnt=0;for(int j=i+1; j<9; j++){if(s[j]<s[i]) cnt++; }code+=fact[8-i]*cnt;}return code;
}void bfs()
{memset(fa,0,sizeof(fa));memset(vis,0,sizeof(vis));int front=1, rear=2;while(front<rear){//cout<<front<<endl;State& s=st[front];//if(memcmp(goal, s, sizeof(s))==0) return front;int z;for(z=0; z<9; z++) if(!s[z]) break;int x=z/3, y=z%3;for(int i=0; i<4; i++){int newx=x+dx[i];int newy=y+dy[i];int newz=newx*3+newy;if(newx>=0 && newx<3 && newy>=0 && newy<3){State&t =st[rear];memcpy(t,s,sizeof(s));t[newz]=s[z];t[z]=s[newz];int code=Code(t);int code1=Code(s);if(!vis[code]){vis[code]=1;fa[code]=code1;dir[code]=i;rear++;}}}front++;}
}void print(int num)
{if(num!=codeend){cout<<cal[dir[num]];print(fa[num]);}
}int main()
{//freopen("in.txt","r",stdin);init_lookup_table();char ch;for(int i=0; i<8; i++) st[1][i]=i+1;st[1][8]=0;codeend=Code(st[1]);vis[codeend]=1;bfs();while(cin>>ch){if(ch=='x') goal[0]=ch-120;else goal[0]=ch-'0';for(int i=1; i<9; i++){cin>>ch;if(ch=='x') goal[i]=ch-120;else goal[i]=ch-'0';}codestart=Code(goal);if(vis[codestart]){print(codestart);cout<<endl;}else cout<<"unsolvable"<<endl;}return 0;
}


这篇关于八数码问题——HDU 1043的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137952

相关文章

usb接口驱动异常问题常用解决方案

《usb接口驱动异常问题常用解决方案》当遇到USB接口驱动异常时,可以通过多种方法来解决,其中主要就包括重装USB控制器、禁用USB选择性暂停设置、更新或安装新的主板驱动等... usb接口驱动异常怎么办,USB接口驱动异常是常见问题,通常由驱动损坏、系统更新冲突、硬件故障或电源管理设置导致。以下是常用解决

Mysql如何解决死锁问题

《Mysql如何解决死锁问题》:本文主要介绍Mysql如何解决死锁问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录【一】mysql中锁分类和加锁情况【1】按锁的粒度分类全局锁表级锁行级锁【2】按锁的模式分类【二】加锁方式的影响因素【三】Mysql的死锁情况【1

SpringBoot内嵌Tomcat临时目录问题及解决

《SpringBoot内嵌Tomcat临时目录问题及解决》:本文主要介绍SpringBoot内嵌Tomcat临时目录问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录SprinjavascriptgBoot内嵌Tomcat临时目录问题1.背景2.方案3.代码中配置t

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

如何解决idea的Module:‘:app‘platform‘android-32‘not found.问题

《如何解决idea的Module:‘:app‘platform‘android-32‘notfound.问题》:本文主要介绍如何解决idea的Module:‘:app‘platform‘andr... 目录idea的Module:‘:app‘pwww.chinasem.cnlatform‘android-32

kali linux 无法登录root的问题及解决方法

《kalilinux无法登录root的问题及解决方法》:本文主要介绍kalilinux无法登录root的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录kali linux 无法登录root1、问题描述1.1、本地登录root1.2、ssh远程登录root2、

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

Pyserial设置缓冲区大小失败的问题解决

《Pyserial设置缓冲区大小失败的问题解决》本文主要介绍了Pyserial设置缓冲区大小失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录问题描述原因分析解决方案问题描述使用set_buffer_size()设置缓冲区大小后,buf

resultMap如何处理复杂映射问题

《resultMap如何处理复杂映射问题》:本文主要介绍resultMap如何处理复杂映射问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录resultMap复杂映射问题Ⅰ 多对一查询:学生——老师Ⅱ 一对多查询:老师——学生总结resultMap复杂映射问题