约瑟夫问题(多解)——POJ 3750

2024-09-05 04:18
文章标签 问题 poj 约瑟夫 3750 多解

本文主要是介绍约瑟夫问题(多解)——POJ 3750,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对应POJ题目:点击打开链接


小孩报数问题
Time Limit: 1000MS Memory Limit: 65536KB 64bit IO Format: %I64d & %I64u

Submit Status

Description

有N个小孩围成一圈,给他们从1开始依次编号,现指定从第W个开始报数,报到第S个时,该小孩出列,然后从下一个小孩开始报数,仍是报到S个出列,如此重复下去,直到所有的小孩都出列(总人数不足S个时将循环报数),求小孩出列的顺序。

Input

第一行输入小孩的人数N(N<=64) 
接下来每行输入一个小孩的名字(人名不超过15个字符) 
最后一行输入W,S (W < N),用逗号","间隔

Output

按人名输出小孩按顺序出列的顺序,每行输出一个人名

Sample Input

5
Xiaoming
Xiaohua
Xiaowang
Zhangsan
Lisi
2,3

Sample Output

Zhangsan
Xiaohua
Xiaoming
Xiaowang
Lisi

Source


思路:

1,循环链表,直接模拟。O(n*s)


2,线段树,O(nlg(n))

例子如下:n = 5, w = 1, s = 3  (括号内为原始编号)

1(1),2(2),3(3),4(4),5(5)     第3个数3出列

1(1),2(2),3(4),4(5)                第1个数1出列

1(2),2(4),3(5)                           第3个数5出列

1(2),2(4)                                      第1个数2出列

1(4)                                                 第1个数4出列


先引入Joseph递推公式,设有n个人(0,...,n-1),数到m退出,则第i轮出局的人为f(i)=(f(i-1)+m-1)%(n-i+1),f(0)=0; f(i) 表示当前子序列中要退出的那个人(当前序列编号为0~(n-i));

f(0) = 0;

第1轮:f(1) = (0 + 3 - 1) % 5 = 2 (下标为2即为第3个数)

第2轮:f(2) = (2 + 3 - 1) % 4 = 0 

第3轮:f(3) = (0 + 3 - 1) % 3 = 2 

第4轮:f(4) = (2 + 3 - 1) % 2 = 0 

第5轮:f(5) = (0 + 3 - 1) % 1 = 0

所以使用这个公式每一轮中每个人的编号的,接着我们需要快速地找到这一轮中要退出的人的编号对应的原始编号。一个人在当前剩余队列中编号为i,则说明他是从左到右数第i个人,这启发我们可以用线段树来解决问题。用线段树维护原编号i..j内还有多少人没 有被淘汰,这样每次选出被淘汰者后,在当前线段树中查找位置就可以了。

例如我们有5个原编号,当前淘汰者在剩余队列中编号为3,先看左子树,即原编号1..3区间内,如果剩下的人不足3个,则说明当前剩余编号为3的 这个人原编号只能是在4..5区间内,继续在4..5上搜索;如果1..3内剩下的人大于等于3个,则说明就在1..3内,也继续缩小范围查找,这样既可 在logn时间内完成对应。问题得到圆满的解决。

3,网上借鉴的令我无法理解的方法:O(n)

http://www.cnblogs.com/void/archive/2011/04/21/2024377.html




方法1:

#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<map>
#include<queue>
#include<stack>
#include<vector>
#include<algorithm>
#include<cstring>
#include<string>
#include<iostream>
#define ms(x,y) memset(x,y,sizeof(x))
const int MAXN=1000+10;
const int INF=1<<30;
using namespace std;struct Node
{char name[20];Node *prior;Node *next;
};void CreateList(Node *&head, int n)
{Node *p,*s;for(int i=0; i<n; i++){s=(Node *)malloc(sizeof(Node));scanf("%s", s->name);if(head == NULL) head=s;else{p->next = s;s->prior = p;}p=s;}p->next = head;head->prior = p;
}Node *Begin(Node *node, int s)
{Node *p=node;for(int i=0; i<s-1; i++)p=p->next;return p;
}void Delete(Node *&node, int s, int n)
{Node *q,*p=node;for(int i=0; i<n; i++){for(int i=0; i<s-1; i++)p=p->next;q=p->next;printf("%s\n", p->name);p->prior->next = p->next;p->next->prior = p->prior;free(p);p=q;}
}int main()
{//freopen("in.txt","r",stdin);int n,w,s;scanf("%d", &n);Node *head=NULL;CreateList(head, n);scanf("%d,%d", &w,&s);Node *p=Begin(head, w);Delete(p, s, n);return 0;
}


方法2

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define N 70
#define L 20
char name[N][L];
int sum[N<<4];void build(int root, int l, int r)
{if(1 == r - l){sum[root] = 1;return;}int mid = ((l + r)>>1);build(root<<1, l, mid);build(root<<1|1, mid, r);sum[root] = sum[root<<1] + sum[root<<1|1];
}int query(int root, int l, int r, int num)
{if(1 == r - l){sum[root] = 0;return l;}int mid = ((l + r)>>1);int ans;if(sum[root<<1] > num) ans = query(root<<1, l, mid, num);else ans = query(root<<1|1, mid, r, num - sum[root<<1]);sum[root] = sum[root<<1] + sum[root<<1|1];return ans;
}int main()
{//freopen("in.txt", "r", stdin);int n, w, s, i, out, num;while(~scanf("%d", &n)){for(i=0; i<n; i++)scanf("%s", name[i]);scanf("%d,%d", &w, &s);build(1, 0, n);out = w - 1;for(i=0; i<n; i++){out = (out + s - 1) % (n - i); //第i+1轮退出的相对编号num = query(1, 0, n, out); //根据相对编号找原始编号//printf("%s\n", name[(num + w - 1) % n]);printf("%s\n", name[num]);}}return 0;
}


方法3

#include <stdio.h>
#define N 70
#define L 20
char name[N][L];int main()
{//freopen("in.txt", "r", stdin);int n, i, m, p, w, s;while(~scanf("%d", &n)){for(i=0; i<n; i++)scanf("%s", name[i]);scanf("%d,%d", &w, &s);i = 0;while( ++i <= n ){p = i * s;while (p > n)p = p - n + (p - n - 1)/(s - 1);printf("%s\n",name[(p - 2 + w) % n]);}}return 0;
}


这篇关于约瑟夫问题(多解)——POJ 3750的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137920

相关文章

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错

如何解决Spring MVC中响应乱码问题

《如何解决SpringMVC中响应乱码问题》:本文主要介绍如何解决SpringMVC中响应乱码问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC最新响应中乱码解决方式以前的解决办法这是比较通用的一种方法总结Spring MVC最新响应中乱码解

pip无法安装osgeo失败的问题解决

《pip无法安装osgeo失败的问题解决》本文主要介绍了pip无法安装osgeo失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 进入官方提供的扩展包下载网站寻找版本适配的whl文件注意:要选择cp(python版本)和你py

解决Java中基于GeoTools的Shapefile读取乱码的问题

《解决Java中基于GeoTools的Shapefile读取乱码的问题》本文主要讨论了在使用Java编程语言进行地理信息数据解析时遇到的Shapefile属性信息乱码问题,以及根据不同的编码设置进行属... 目录前言1、Shapefile属性字段编码的情况:一、Shp文件常见的字符集编码1、System编码

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图

Redis解决缓存击穿问题的两种方法

《Redis解决缓存击穿问题的两种方法》缓存击穿问题也叫热点Key问题,就是⼀个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击,本文给大家介绍了Re... 目录引言解决办法互斥锁(强一致,性能差)逻辑过期(高可用,性能优)设计逻辑过期时间引言缓存击穿:给

Java程序运行时出现乱码问题的排查与解决方法

《Java程序运行时出现乱码问题的排查与解决方法》本文主要介绍了Java程序运行时出现乱码问题的排查与解决方法,包括检查Java源文件编码、检查编译时的编码设置、检查运行时的编码设置、检查命令提示符的... 目录一、检查 Java 源文件编码二、检查编译时的编码设置三、检查运行时的编码设置四、检查命令提示符

Jackson库进行JSON 序列化时遇到了无限递归(Infinite Recursion)的问题及解决方案

《Jackson库进行JSON序列化时遇到了无限递归(InfiniteRecursion)的问题及解决方案》使用Jackson库进行JSON序列化时遇到了无限递归(InfiniteRecursi... 目录解决方案‌1. 使用 @jsonIgnore 忽略一个方向的引用2. 使用 @JsonManagedR