开灯问题 —— POJ 1218 THE DRUNK JAILER

2024-09-05 04:08
文章标签 问题 poj 开灯 1218 drunk jailer

本文主要是介绍开灯问题 —— POJ 1218 THE DRUNK JAILER,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对应POJ 题目:点击打开链接

THE DRUNK JAILER
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 24831 Accepted: 15569

Description

A certain prison contains a long hall of n cells, each right next to each other. Each cell has a prisoner in it, and each cell is locked. 
One night, the jailer gets bored and decides to play a game. For round 1 of the game, he takes a drink of whiskey,and then runs down the hall unlocking each cell. For round 2, he takes a drink of whiskey, and then runs down the 
hall locking every other cell (cells 2, 4, 6, ?). For round 3, he takes a drink of whiskey, and then runs down the hall. He visits every third cell (cells 3, 6, 9, ?). If the cell is locked, he unlocks it; if it is unlocked, he locks it. He 
repeats this for n rounds, takes a final drink, and passes out. 
Some number of prisoners, possibly zero, realizes that their cells are unlocked and the jailer is incapacitated. They immediately escape. 
Given the number of cells, determine how many prisoners escape jail.

Input

The first line of input contains a single positive integer. This is the number of lines that follow. Each of the following lines contains a single integer between 5 and 100, inclusive, which is the number of cells n. 

Output

For each line, you must print out the number of prisoners that escape when the prison has n cells. 

Sample Input

2
5
100

Sample Output

2
10

题意:

可以理解成这样:有n盏灯,一开始所有灯都是灭的,第1轮对序号是1的倍数的灯操作(原来亮的就熄灭,原来灭的就点亮);第2轮对序号是2的倍数的灯操作、、、第i轮对序号是i的倍数的灯操作,直到第n轮过后,问剩下多少盏灯是亮的。


思路1:枚举,不解释


思路2:

这个问题有如下性质:

1、如果某盏灯被操作的次数是奇数,那它就是亮的(一开始是灭的)。

2、对于第i盏灯(i从1开始),如果i是完全平方数,那这盏灯被操作的次数就是奇数。


性质1是显然的:第0次是灭的,第1次是亮的,第2次是灭的。。。

性质2的证明:

对于序号为18这盏灯,它被操作的轮数是:第1轮,第2轮,第3轮,第6轮,第9轮,第18轮。被操作了6次,是偶数次。它被操作的轮数其实就是它的所有约数。一个大于1的非完全平方数的约数个数都是成对出现的,即都是偶数。而完全平方数,如16,其约数为1,2,4,8,16。是5个,因为4的平方是16,所以4只算一次。所以完全平方数的约数是奇数。


对于题目要求,序号为i的灯的被操作次数就是i的所有约数的个数a,如果a是奇数,那序号为i的灯最后就是亮的。归结起来就是如果i是完全平方数,那序号为i的灯最后就是亮的。所以题目最后求的就是1~n的完全平方数的个数。答案不难得出,就是将n开方向下取整(可以这样理解:x^2 <= n,解出x = 根号n向下取整,那x就是满足要求的最大值,如果k属于1~x,那k^2都是完全平方数,共有x个)。


思路1代码:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define M 550
int a[M];int main()
{//freopen("in.txt","r",stdin);int n, x, i, j, ans;scanf("%d", &n);while(n--){ans = 0;memset(a, 0, sizeof(a));scanf("%d", &x);for(i = 1; i <= x; i++){for(j = i; j <= x; j += i){if(a[j]) a[j] = 0;else a[j] = 1;}}for(i = 1; i <= x; i++)if(a[i]) ans++;printf("%d\n", ans);}return 0;
}

思路2代码:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>int main()
{//freopen("in.txt","r",stdin);int n, x;scanf("%d", &n);while(n--){scanf("%d", &x);printf("%d\n", (int)sqrt(double(x)));}return 0;
}

两种写法的空间都是140k左右,时间都是0ms,不太理解~






这篇关于开灯问题 —— POJ 1218 THE DRUNK JAILER的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137904

相关文章

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

Pyserial设置缓冲区大小失败的问题解决

《Pyserial设置缓冲区大小失败的问题解决》本文主要介绍了Pyserial设置缓冲区大小失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录问题描述原因分析解决方案问题描述使用set_buffer_size()设置缓冲区大小后,buf

resultMap如何处理复杂映射问题

《resultMap如何处理复杂映射问题》:本文主要介绍resultMap如何处理复杂映射问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录resultMap复杂映射问题Ⅰ 多对一查询:学生——老师Ⅱ 一对多查询:老师——学生总结resultMap复杂映射问题

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu

如何解决mmcv无法安装或安装之后报错问题

《如何解决mmcv无法安装或安装之后报错问题》:本文主要介绍如何解决mmcv无法安装或安装之后报错问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mmcv无法安装或安装之后报错问题1.当我们运行YOwww.chinasem.cnLO时遇到2.找到下图所示这里3.

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

Vue3使用router,params传参为空问题

《Vue3使用router,params传参为空问题》:本文主要介绍Vue3使用router,params传参为空问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录vue3使用China编程router,params传参为空1.使用query方式传参2.使用 Histo

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu