【重学 MySQL】三、RDBMS 和非 RDBMS

2024-09-04 04:12
文章标签 mysql database rdbms

本文主要是介绍【重学 MySQL】三、RDBMS 和非 RDBMS,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【重学 MySQL】三、RDBMS 和非 RDBMS

  • 关系型数据库(RDBMS)
    • 关系型数据库的核心概念
    • 关系型数据库的优点
    • 关系型数据库的缺点
  • 非关系型数据库(非 RDBMS)
    • 定义与特点
    • 主要特点
    • 常见类型
    • 应用场景
    • 优缺点
    • NoSql 的演变
      • 早期阶段(20世纪70年代至2000年代初)
      • 兴起阶段(2000年代初至2012年)
      • 成熟阶段(2013年至今)
      • 发展趋势

在这里插入图片描述

关系型数据库(RDBMS)

关系型数据库(Relational Database Management System, RDBMS)是一种基于关系模型的数据库管理系统,它使用表格(Table)来存储数据,并通过表格之间的关联(Relation)来实现数据的组织和管理。关系型数据库通过SQL(Structured Query Language)语言来进行数据的查询、更新、插入和删除等操作。

关系型数据库的核心概念

  1. 表格(Table):关系型数据库中的基本数据存储结构,由行(Row)和列(Column)组成。每一行代表一个记录(Record),每一列代表一个字段(Field),字段定义了数据的类型(如整数、字符串、日期等)。

  2. 关系(Relation):表格之间的关联,通过特定的字段(如主键和外键)来实现。关系可以是一对一、一对多或多对多等类型。

  3. 主键(Primary Key):表格中的一个或多个字段,用于唯一标识表中的每一条记录。主键字段的值必须是唯一的,且不允许为空。

  4. 外键(Foreign Key):一个表格中的字段,其值必须对应另一个表格的主键字段的值。外键用于建立和维护表格之间的关联。

  5. 索引(Index):为了提高数据库查询的效率,可以对表格中的某个或某些字段创建索引。索引可以极大地加快数据检索的速度,但也会占用额外的存储空间,并可能影响插入、删除和更新操作的性能。

  6. SQL语言:关系型数据库的标准查询和操作语言,用于实现数据的增删改查(CRUD)操作,以及数据库的结构定义和管理。

关系型数据库的优点

  • 数据一致性:通过事务管理、触发器、外键等机制来保证数据的一致性和完整性。
  • 易于理解:关系模型直观易懂,符合人们的思维方式。
  • 便于管理:提供了丰富的数据管理工具,如SQL Server Management Studio、Oracle SQL Developer等。
  • 安全性:提供了用户认证、权限管理、数据加密等安全机制。

关系型数据库的缺点

  • 性能瓶颈:在处理大规模数据时,关系型数据库的性能可能会受到影响,尤其是在高并发场景下。
  • 扩展性:关系型数据库的扩展性相对较差,通常需要通过复杂的集群技术来实现水平扩展。
  • 成本:商业版的关系型数据库软件成本较高,需要购买许可证和维护支持服务。

尽管如此,关系型数据库仍然是企业和组织中最常用的数据存储和管理工具之一,因为它提供了强大的数据一致性和完整性保证,以及丰富的数据管理工具和安全机制。随着技术的发展,关系型数据库也在不断演进和优化,以更好地满足现代应用的需求。

非关系型数据库(非 RDBMS)

非关系型数据库(Non-Relational Database Management System, NoSQL)是与传统的关系型数据库(RDBMS)相对应的一种数据库管理系统。它不使用关系模型来组织数据,而是采用键值对、文档、列存储、图存储等非关系模型来存储数据。

定义与特点

非关系型数据库是一种不遵循传统关系模型的数据存储和管理方式,它突破了关系数据库结构不可变的限制,数据存储不需要经过SQL层的解析,具有高性能、高可扩展性、灵活的数据模型等特点。NoSQL最常见的解释是“non-relational”,但也有“Not Only SQL”的说法,强调它不仅仅是非关系型的,而是提供了更多样化的数据存储方式。

主要特点

  1. 非结构化:非关系型数据库支持存储非结构化的数据,如文本、图像、音频、视频等,这使得它更适合处理复杂和多样的数据类型。
  2. 高性能:由于不需要经过SQL层的解析,非关系型数据库通常具有更高的读写性能,适用于对性能要求较高的场景。
  3. 高可扩展性:非关系型数据库通常采用分布式架构,可以轻松地扩展到多个节点上,支持海量数据的存储和高并发的读写。
  4. 灵活的数据模型:非关系型数据库支持灵活的数据模型,可以轻松地适应不断变化的数据需求,避免了频繁的模式设计和调整。
  5. 实时数据处理能力:非关系型数据库通常具有高性能的实时数据处理能力,可以满足实时响应和预警等需求。

常见类型

非关系型数据库根据数据存储方式的不同,可以分为以下几种类型:

  1. 键值存储数据库:如Redis,通过键值对的方式来存储数据,查找速度快,适用于作为内存缓存。
  2. 文档存储数据库:如MongoDB,CouchDB,可以存放并获取文档,文档可以是XML、JSON等格式,适合处理复杂的半结构化数据。
  3. 列存储数据库:如HBase,将数据按照列存储到数据库中,可以大量降低系统的I/O,适合于分布式文件系统。
  4. 图存储数据库:如Neo4J、InfoGrid,是一种存储图形关系的数据库,可以方便地存储复杂关系的数据。

应用场景

非关系型数据库在以下场景中应用更为合适:

  1. 大规模数据存储:适用于处理大规模数据集和高并发访问,如互联网公司的用户行为数据、网络日志数据等。
  2. 灵活的数据模型:适用于需要快速迭代和灵活变化的应用场景,如社交媒体、移动应用等。
  3. 实时数据处理:适用于需要实时响应和预警的系统,如金融风控系统、实时交通信息等场景。

优缺点

非关系型数据库的优点主要包括高性能、高可扩展性、灵活的数据模型和高性能的实时数据处理能力。然而,它也存在一些缺点,如缺乏严格的数据一致性和完整性约束、查询能力相对较弱、在某些情况下可能会出现数据丢失等问题。因此,在选择数据库时,需要根据具体的应用场景和需求进行权衡和选择。

NoSql 的演变

NoSQL(Not Only SQL)数据库的演变过程是一个伴随着互联网发展、数据量爆炸式增长以及技术创新的历程。

早期阶段(20世纪70年代至2000年代初)

  • 背景:早期数据库系统主要是层次型和网状型数据库,它们在处理复杂数据结构和大规模数据时存在局限性。随后,关系型数据库(RDBMS)以其严格的数据模式和强大的查询语言成为主流。
  • 关系型数据库的局限性:随着互联网的发展,数据量急剧增加,关系型数据库在处理大规模数据存储、高并发访问以及高可用性等方面逐渐显露出不足。

兴起阶段(2000年代初至2012年)

  • 非关系型数据库的诞生:为了解决关系型数据库的不足,非关系型数据库(NoSQL)开始兴起。这些数据库不遵循关系模型的ACID特性,而是采用更灵活的数据模型和高性能、高可扩展性的架构。
  • 关键事件
    • 2006年,Amazon推出了Dynamo系统,这是一个高可用、分布式的键值存储系统,为NoSQL数据库的发展提供了重要的实践经验。
    • 2009年,MongoDB发布,作为一个文档型数据库,它具有灵活的数据模型和强大的查询功能,迅速受到开发者的欢迎。
    • 同一时期,其他类型的NoSQL数据库如Cassandra(列族数据库)、Redis(内存数据库)等也开始兴起,为不同的应用场景提供了多样化的选择。

成熟阶段(2013年至今)

  • 广泛应用:NoSQL数据库在各个领域得到广泛应用,包括互联网、金融、物联网等。开发者对NoSQL数据库的认识和理解不断加深,开始更加理性地选择适合自己应用场景的数据库。
  • 技术发展与完善:NoSQL数据库的技术不断发展和完善,功能越来越强大,性能也不断提升。同时,一些NoSQL数据库开始支持SQL语言,以提高其易用性。
  • 与云计算的深度融合:NoSQL数据库与云计算平台的结合越来越紧密,为企业提供了更加便捷、高效的数据存储和处理解决方案。例如,AWS的DynamoDB、阿里云的Tair等产品都针对云计算环境进行了优化设计。
  • 多模型融合:未来的NoSQL数据库将支持多种数据模型(如文档、键值、列族、图等),以满足复杂多样的业务需求。

发展趋势

  • 云原生特性增强:越来越多的NoSQL数据库产品将针对云计算环境进行优化设计,充分利用云平台的弹性扩展、分布式存储等优势。
  • Serverless架构的应用:NoSQL数据库将更多地采用Serverless架构,降低使用门槛和成本,提高开发效率。
  • 支持更复杂的查询和分析:通过不断优化查询引擎和索引技术,NoSQL数据库将能够支持更复杂的查询操作和实时分析功能。
  • 内置机器学习算法:一些NoSQL数据库将逐渐内置机器学习算法和库,以便在数据库内部直接进行数据挖掘、模型训练和预测分析等操作。
  • 与人工智能平台的集成:NoSQL数据库将与主流的人工智能和机器学习平台进行更紧密的集成,为构建智能化应用提供更便捷的数据支持。

综上所述,NoSQL数据库的演变是一个不断创新和演进的过程,它为处理大规模数据和高并发访问提供了新的思路和方法。随着技术的不断进步和应用场景的不断拓展,NoSQL数据库将在未来的数据存储和处理中发挥更加重要的作用。

这篇关于【重学 MySQL】三、RDBMS 和非 RDBMS的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134962

相关文章

SQL中的外键约束

外键约束用于表示两张表中的指标连接关系。外键约束的作用主要有以下三点: 1.确保子表中的某个字段(外键)只能引用父表中的有效记录2.主表中的列被删除时,子表中的关联列也会被删除3.主表中的列更新时,子表中的关联元素也会被更新 子表中的元素指向主表 以下是一个外键约束的实例展示

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

如何去写一手好SQL

MySQL性能 最大数据量 抛开数据量和并发数,谈性能都是耍流氓。MySQL没有限制单表最大记录数,它取决于操作系统对文件大小的限制。 《阿里巴巴Java开发手册》提出单表行数超过500万行或者单表容量超过2GB,才推荐分库分表。性能由综合因素决定,抛开业务复杂度,影响程度依次是硬件配置、MySQL配置、数据表设计、索引优化。500万这个值仅供参考,并非铁律。 博主曾经操作过超过4亿行数据

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

MySQL数据库宕机,启动不起来,教你一招搞定!

作者介绍:老苏,10余年DBA工作运维经验,擅长Oracle、MySQL、PG、Mongodb数据库运维(如安装迁移,性能优化、故障应急处理等)公众号:老苏畅谈运维欢迎关注本人公众号,更多精彩与您分享。 MySQL数据库宕机,数据页损坏问题,启动不起来,该如何排查和解决,本文将为你说明具体的排查过程。 查看MySQL error日志 查看 MySQL error日志,排查哪个表(表空间

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份

[MySQL表的增删改查-进阶]

🌈个人主页:努力学编程’ ⛅个人推荐: c语言从初阶到进阶 JavaEE详解 数据结构 ⚡学好数据结构,刷题刻不容缓:点击一起刷题 🌙心灵鸡汤:总有人要赢,为什么不能是我呢 💻💻💻数据库约束 🔭🔭🔭约束类型 not null: 指示某列不能存储 NULL 值unique: 保证某列的每行必须有唯一的值default: 规定没有给列赋值时的默认值.primary key:

MySQL-CRUD入门1

文章目录 认识配置文件client节点mysql节点mysqld节点 数据的添加(Create)添加一行数据添加多行数据两种添加数据的效率对比 数据的查询(Retrieve)全列查询指定列查询查询中带有表达式关于字面量关于as重命名 临时表引入distinct去重order by 排序关于NULL 认识配置文件 在我们的MySQL服务安装好了之后, 会有一个配置文件, 也就

Java 连接Sql sever 2008

Java 连接Sql sever 2008 /Sql sever 2008 R2 import java.sql.Connection; import java.sql.DriverManager; import java.sql.ResultSet; import java.sql.Statement; public class TestJDBC

Mysql BLOB类型介绍

BLOB类型的字段用于存储二进制数据 在MySQL中,BLOB类型,包括:TinyBlob、Blob、MediumBlob、LongBlob,这几个类型之间的唯一区别是在存储的大小不同。 TinyBlob 最大 255 Blob 最大 65K MediumBlob 最大 16M LongBlob 最大 4G