解放你的带宽和内存:GZIP在解决Redis大Key方面的应用

2024-09-04 03:04

本文主要是介绍解放你的带宽和内存:GZIP在解决Redis大Key方面的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首发公众号:赵侠客

引用

目前主流HTTP协议接口都是使用JSON格式做数据交换的,JSON数据格式有着结构简单、可读性高、跨平台,易解析等优点,同时也存在着冗余数据会占用非常多的储存空间的问题,这大大增加了JSON格式数据在存储、传输过程中的性能消耗。所以对JSON格式数据压缩后再传输、存储就变的非常的有价值,如对JSON格式数据使用GZIP压缩算法可以实现90%左右的压缩率,更小的空间可以节省存储成本和降低传输带宽成本,本文介绍GZIP压缩算法在优化Redis使用大KEY字段中的应用,通过简单压缩可以节省88%的内存空间和带宽资源。

HTTP协议开启GZIP

HTTP协议标准中是直接支持GZIP压缩算法的,通过响应头Content-Encoding: gzip来表明响应内容使用了GZIP压缩,当客户端收到数据后会使用GZIP算法对Body内容进行解压。

RFC 1952 - IETF(互联网工程任务组)标准化的Gzip文件格式规范,

RFC 2616 - HTTP 1.1 协议规范,其中包括对 Content-Encoding 头的定义

在Nginx中可以通过 gzip on开启GZIP压缩功能:

gzip on;
gzip_types text/plain text/css application/json application/javascript text/xml application/xml application/xml+rss text/javascript;

在Springboot中可以通过server.compression.enabled开启GZIP压缩功能:

server:port: 80compression:enabled: truemime-types:  application/javascript,text/css,application/json,application/xml,text/html,text/xml,text/plainmin-response-size: 2KB
  • enabled,开启或关闭
  • mime-types,压缩的数据类型
  • min-response-size,最小压缩大小

测试GZIP

为了测试开启GZIP前后的对比效果我们写一个简单的接口:

@GetMapping("/list")
public ResponseEntity<ApiResult> list() {return renderOk(getData());
}

我们返回1000条JSON格式的用户信息:


private List<UserVo> getData() {return IntStream.range(1, 1000).mapToObj(x -> new UserVo(x,x+"+email@q63.com",x+"_公众号",x+"_赵侠客")).collect(Collectors.toList());
}
@Data
@AllArgsConstructor
public class UserVo {private Integer id;private String username;private String email;private String trueName;
}

在未开启GZIP前接口返回数据的大小是92.8KB, Content-Encoding为空,在开启GZIP后接口返回的数据大小为11.5KB,Content-Encoding为gzip,接口返回数量降低了88%。
开启GZIP前后对比

当然我们也可以在接口中通过手动添加content-encoding响应头,然后通过手动调用GZIPOutputStream对返回数据进行GZIP压缩:

@GetMapping("/gzip")
public void gzip(HttpServletResponse response) throws IOException {response.setContentType("application/json;charset=utf-8");response.setHeader("content-encoding", "gzip");try (GZIPOutputStream gzipOutputStream = new GZIPOutputStream(response.getOutputStream())) {IOUtils.write(JsonUtils.toJson(getData()), gzipOutputStream);}
}

Redis缓存压缩

为了增加接口的响应速度我们通常会使用Redis当缓存,基本逻辑是先查Redis有没有数据如果有直接返回,如果没有会查数据库,然后再存入Redis,以下是一个简单的使用Redis当缓存的接口:

@Resource
private RedissonClient redissonClient;
public static final String REDIS_KEY = "REDIS_KEY";@GetMapping("/redis")
public void redis(HttpServletResponse response) throws IOException {RBucket<String> bucket = redissonClient.getBucket(REDIS_KEY);String data = bucket.get();if (data == null) {data=JsonUtils.toJson(getData());redissonClient.getBucket(REDIS_KEY).set(data,100L, TimeUnit.SECONDS);}response.setContentType("application/json");IOUtils.write(data, response.getOutputStream());
}

我们分析一下这样个接口的基本数据流:

  • 第一次从数据库服务器查出92.8KB的数据传输到WEB服务器中
  • 将92.8KB的数据从WEB服务器传输到Redis服务器中
  • 后面如果命中缓存将92.8KB数据从Redis服务器传输到WEB服务器
  • 最后将92.8KB数据从WEB服务器返回给用户浏览器

使用Redis当缓存加速接口

使用ZIP优化Redis缓存:


public static final String GZIP_REDIS_KEY = "GZIP_REDIS_KEY";@GetMapping("/gzipRedis")
public void gzipRedis(HttpServletResponse response) throws IOException {RBucket<byte[]> bucket = redissonClient.getBucket(GZIP_REDIS_KEY);byte[] data = bucket.get();if (data == null) {String json=JsonUtils.toJson(getData());try (ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStream();GZIPOutputStream gzipOutputStream = new GZIPOutputStream(byteArrayOutputStream)) {IOUtils.write(json, gzipOutputStream, String.valueOf(StandardCharsets.UTF_8));gzipOutputStream.finish();data= byteArrayOutputStream.toByteArray();redissonClient.getBucket(GZIP_REDIS_KEY).set(data,100L, TimeUnit.SECONDS);}}response.setContentType("application/json");response.setHeader("content-encoding", "gzip");IOUtils.write(data, response.getOutputStream());
}

使用GZIP压缩后的缓存接口

我们再分析一下以上使用GZIP压缩后的数据传输:

  • 第一次从数据库服务器查出92.8KB的数据传输到WEB服务器中
  • 将11.5KB的GZIP数据从WEB服务器传输到Redis服务器中
  • 后面命中缓存将11.5KB数据从Redis服务器传输到WEB服务器
  • 最后将11.KB数据从WEB服务器返回给用户浏览器

GZIP压缩后的Redis缓存

单次接口请求好像感觉不到这个 GZIP压缩带来的好处,接下来我们压测一下看看会不会有差距。

压力测试

压测可以使用ab (Apache Benchmark) 工具,ab工具是 Apache HTTP server 的一部分,在 macOS使用Homebrew包管理器可以快速安装上ab :

brew install httpd
ab -V
ab -n 100 -c 10 http://localhost/list

其中:

  • -n 100 表示总共请求 100 次。
  • -c 10 表示并发 10 个请求。

未压缩走Redis压缩结果:


ab -n 100000 -c 10 http://localhost/redisFinished 100000 requests
Document Length:        92476 bytes
Concurrency Level:      10
Time taken for tests:   194.917 seconds
Complete requests:      100000
Failed requests:        0
Total transferred:      9258100000 bytes
HTML transferred:       9247600000 bytes
Requests per second:    513.04 [#/sec] (mean)
Time per request:       19.492 [ms] (mean)
Time per request:       1.949 [ms] (mean, across all concurrent requests)
Transfer rate:          46384.34 [Kbytes/sec] receivedConnection Times (ms)min  mean[+/-sd] median   max
Connect:        0    8 249.5      0   19514
Processing:     4   12  19.8     10     754
Waiting:        4   11  19.8     10     754
Total:          4   19 250.4     10   19525
Percentage of the requests served within a certain time (ms)50%     1066%     1175%     1180%     1290%     1295%     1598%     2799%    134100%  19525 (longest request)

使用GZIP压缩后走Redis缓存压测结果:

ab -n 100000 -c 10 http://localhost/gzipRedisFinished 100000 requests
Document Length:        11091 bytes
Concurrency Level:      10
Time taken for tests:   194.927 seconds
Complete requests:      100000
Failed requests:        0
Total transferred:      1122000000 bytes
HTML transferred:       1109100000 bytes
Requests per second:    513.01 [#/sec] (mean)
Time per request:       19.493 [ms] (mean)
Time per request:       1.949 [ms] (mean, across all concurrent requests)
Transfer rate:          5621.09 [Kbytes/sec] receivedConnection Times (ms)min  mean[+/-sd] median   max
Connect:        0   12 410.4      0   19608
Processing:     3    7  20.0      4     802
Waiting:        3    7  19.9      4     801
Total:          3   19 410.9      4   19613Percentage of the requests served within a certain time (ms)50%      466%      975%      980%      990%     1095%     1098%     1199%     19100%  19613 (longest request)

总结

对比使用GZIP压缩我们可以得出以下几点:

  • 测试中10万请求在194S完成,缓存时间是100S,服务器端只做了二次查数据库和GZIP压缩然后存数Redis
  • 两次GZIP和之后的数据传输消耗资源可以忽略不计
  • 未压缩10万请求从Redis传输了8.6GB数据到WEB服务器,又从WEB服务器传输8.6GB给用户浏览器,
  • 压缩10万请求从Redis传输了1GB数据到WEB服务器,又从WEB服务器传输1GB给用户浏览器,节省数据传输15.2GB,节省率88%
  • 未压缩数据传输速度达到45M/S,压缩后5.4M/S,节省带宽88%
  • 如果Redis中大JSON都使用GZIP压缩理论上可以节省Redis内存达到88%
  • 因为直接使用gzip返回,所有解压计算在用户浏览器端完成,不消耗服务器CPU资源

请求10万次数据传输流程

综合上所述如里你的Redis缓存中存在大量的大Key,可能先达到瓶颈的不是Redis的读写性能,很可能是你的带宽,此时只需要简单的使用GZIP压缩就能你给不仅节省88%的Redis内存空间还大大减少了数据的传输量和节省了带宽资源,而且还能使用的C端用户的资源来解压,这个ROI是非常高的。

这篇关于解放你的带宽和内存:GZIP在解决Redis大Key方面的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134817

相关文章

redis群集简单部署过程

《redis群集简单部署过程》文章介绍了Redis,一个高性能的键值存储系统,其支持多种数据结构和命令,它还讨论了Redis的服务器端架构、数据存储和获取、协议和命令、高可用性方案、缓存机制以及监控和... 目录Redis介绍1. 基本概念2. 服务器端3. 存储和获取数据4. 协议和命令5. 高可用性6.

解决jupyterLab打开后出现Config option `template_path`not recognized by `ExporterCollapsibleHeadings`问题

《解决jupyterLab打开后出现Configoption`template_path`notrecognizedby`ExporterCollapsibleHeadings`问题》在Ju... 目录jupyterLab打开后出现“templandroidate_path”相关问题这是 tensorflo

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

Java多线程父线程向子线程传值问题及解决

《Java多线程父线程向子线程传值问题及解决》文章总结了5种解决父子之间数据传递困扰的解决方案,包括ThreadLocal+TaskDecorator、UserUtils、CustomTaskDeco... 目录1 背景2 ThreadLocal+TaskDecorator3 RequestContextH

解决JavaWeb-file.isDirectory()遇到的坑问题

《解决JavaWeb-file.isDirectory()遇到的坑问题》JavaWeb开发中,使用`file.isDirectory()`判断路径是否为文件夹时,需要特别注意:该方法只能判断已存在的文... 目录Jahttp://www.chinasem.cnvaWeb-file.isDirectory()遇

linux进程D状态的解决思路分享

《linux进程D状态的解决思路分享》在Linux系统中,进程在内核模式下等待I/O完成时会进入不间断睡眠状态(D状态),这种状态下,进程无法通过普通方式被杀死,本文通过实验模拟了这种状态,并分析了如... 目录1. 问题描述2. 问题分析3. 实验模拟3.1 使用losetup创建一个卷作为pv的磁盘3.

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

SpringBoot中的404错误:原因、影响及解决策略

《SpringBoot中的404错误:原因、影响及解决策略》本文详细介绍了SpringBoot中404错误的出现原因、影响以及处理策略,404错误常见于URL路径错误、控制器配置问题、静态资源配置错误... 目录Spring Boot中的404错误:原因、影响及处理策略404错误的出现原因1. URL路径错

Redis存储的列表分页和检索的实现方法

《Redis存储的列表分页和检索的实现方法》在Redis中,列表(List)是一种有序的数据结构,通常用于存储一系列元素,由于列表是有序的,可以通过索引来访问元素,因此可以很方便地实现分页和检索功能,... 目录一、Redis 列表的基本操作二、分页实现三、检索实现3.1 方法 1:客户端过滤3.2 方法

Python中操作Redis的常用方法小结

《Python中操作Redis的常用方法小结》这篇文章主要为大家详细介绍了Python中操作Redis的常用方法,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解一下... 目录安装Redis开启、关闭Redisredis数据结构redis-cli操作安装redis-py数据库连接和释放增