【STM32开发】GPIO最全解析及应用实例

2024-09-03 21:12

本文主要是介绍【STM32开发】GPIO最全解析及应用实例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

【1】GPIO概述

GPIO的基本概念

GPIO的应用

【2】GPIO功能描述

1.IO功能框图

2.知识补充

3.功能详述

浮空输入

上拉输入

下拉输入

模拟输入

推挽输出

开漏输出

复用开漏输出和复用推挽输出

【3】GPIO常用寄存器

相关寄存器介绍

4个32位配置寄存器

2个32位数据寄存器

1个32位 置位/复位寄存器

2个32位 复用功能配置寄存器

常用寄存器详述

GPIO端口模式寄存器(GPIOx_MODER)(x=A...D,F)

GPIO 端口输出类型寄存器 (GPIOx_OTYPER) (x = A..D,F)

GPIO 口输出速度寄存器 (GPIOx_OSPEEDR) (x = A..D,F)

GPIO 口上拉 / 下拉寄存器 (GPIOx_PUPDR) (x = A..D,F)

GPIO 端口输入数据寄存器 (GPIOx_IDR) (x = A..D,F)

GPIO 端口输出数据寄存器 (GPIOx_ODR) (x = A..D,F)

GPIO 端口置位 / 复位寄存器 (GPIOx_BSRR) (x = A..D,F)

 

【4】GPIO实验:点亮LED灯

实验步骤

1.观察开发板

2.分析原理图

3.分析寄存器

4.编写代码

5.编译下载

6.运行测试

结语


【1】GPIO概述

GPIO的基本概念

GPIO,即通用输入输出接口,是一种在数字电子系统中常见的接口类型。GPIO接口既可以作为输入引脚接收来自外部设备的电信号,也可以作为输出引脚向外部设备发送电信号。其“通用”二字意味着GPIO接口具有高度的灵活性,可以根据需要配置为输入或输出模式,实现与外部设备的通信和控制。

GPIO的应用

GPIO在嵌入式系统中的应用极为广泛,包括但不限于以下几个方面:

  1. 设备控制:通过GPIO控制LED灯、数码管、继电器等外部设备的开关状态。
  2. 数据采集:读取按键、光照传感器、ADC(模拟数字转换器)等外部设备的输入信号。
  3. 通信接口:GPIO可以作为串口(如USART)、I2C、SPI等通信协议的数据收发管脚,实现与外部设备的通信。
  4. 复用功能:在某些情况下,GPIO引脚可以被配置为特定外设的接口,如定时器的外部触发输入等。

【2】GPIO功能描述

      查看技术手册的图 第8章通用IO 

1.IO功能框图

2.知识补充

   这里对图中涉及的一些知识点做简要说明,以帮助初学者能够读懂功能框图。

1.模拟信号和数字信号的区别?

模拟信号:连续变化的值,例如读取到的连续的电压值、温度、压力等。

数字信号:离散的数值,通常可以用“0”和“1”两种状态来表示。

2. 施密特触发器的作用

由于外部输入的信号,可能会出现脉冲等噪声的影响,为了让信号更加清晰,所以就设置了TTL施密特触发器来进行整形。

3.VCC、VDD和VSS说明

VCC:接入电路的电压

VDD:器件内部的工作电压,通常VCC>VDD

VSS:电路公共接地端电压

3.功能详述

浮空输入

IO--TTL施密特触发器--输入寄存器--读

通俗讲就是让管脚什么都不接,悬空着。

此时VDD和VSS所在路径的两个开关同时断开。因为没有上拉和下拉,所以当IO口没有接输入的时候,此时的电平状态会是一个不确定的值,完全由外部输入决定。

一般实际运用时,引脚不建议悬空,易受干扰。

优势:

这一种输入模式的电平会完全取决于外部电路而与内部电路无关。

缺点:

在没有外部电路接入的时候,IO脚浮空会使得电平不确定

应用:

该模式是STM32复位之后的默认模式,一般用作对开关按键的读取或用于标准的通讯协议,比如IIC、USART的等。

上拉输入

IO--上拉电阻--TTL施密特触发器--输入寄存器--读

上拉就是把电位拉高。此时如果I/O口断开不接外设,输入端的电平会保持在高电平。

上拉输入就是信号进入芯片后加了一个上拉电阻,再经过施密特触发器转换成0、1信号,读取此时的引脚电平为高电平

上拉:当我们闭合上拉电阻的开关,断开下拉电阻的开关的时候,也就是此时为上拉通路导通。

优势:输入的电平不会因上下浮动而导致输入信号不稳定,在没有信号输入的情况下可以稳定在高电平。

下拉输入

IO--下拉电阻--TTL施密特触发器--输入寄存器--读

下拉就是把电位拉低。与上拉原理相似。

下拉输入就是信号进入芯片后加了一个下拉电阻,再经过施密特触发器转换成0、1信号,读取此时的引脚电平为低电平;

优势:输入的电平不会上下浮动而导致输入信号不稳定,在没有信号输入的情况下可以稳定在低电平。

模拟输入

IO----模拟

信号进入后不经过上拉电阻或者下拉电阻,关闭施密特触发器,经由另一线路把电压信号传送到片上外设模块。所以可以理解为模拟输入的信号是未经处理的信号,是原汁原味的信号。

应用:当 GPIO 引脚用于 ADC 采集电压的输入通道时,则需要选择“模拟输入”功能,因为经过施密特触发器后信号只有 0、1 两种状态,所以 ADC 外设要采集到原始的模拟信号,信号源输入必须在施密特触发器之前。

推挽输出

输出寄存器上的’0’激活 N-MOS,而输出寄存器上的’1’将激活 P-MOS,具备输出高低电平的能力。

当上面的MOS管导通时,GPIO输出高电平1,称为“推”,

当下面MOS管导通时,GPIO输出低电平0,称为“挽”。

高低电平值由芯片内部的电源决定。

开漏输出

输出寄存器上的’0’激活 N-MOS,使得输出接地。

输出寄存器上的’1’将端口置于高阻状态 (P-MOS从不被激活)。

所以引脚既不输出高电平,也不输出低电平。

即:写0输出低电平,写1输出高阻态(High Impedance)

无法真正输出高电平,即高电平时没有驱动能力,需要借助外部上拉电阻完成对外驱动。

可以利用改变上拉电源的电压来适应所需,进而提高外部电路的驱动能力。

复用开漏输出和复用推挽输出

复用推挽和复用开漏其实很简单,如果不想用单片机内部来输出控制,那么可以进行复用,将输出转移到其他外设上面,由外设的信号驱动输出缓冲器。

【3】GPIO常用寄存器

相关寄存器介绍

4个32位配置寄存器

GPIOx_MODER:模式寄存器,用于配置GPIO引脚的工作模式(输入、输出、复用、模拟等)。

GPIOx_OTYPER:输出类型寄存器,用于配置GPIO引脚为输出时的类型(推挽输出或开漏输出)。

GPIOx_OSPEEDR:输出速度寄存器,用于配置GPIO引脚输出信号的速度。

GPIOx_PUPDR:上拉/下拉寄存器,用于配置GPIO引脚的上拉或下拉电阻。

2个32位数据寄存器

GPIOx_IDR:输入数据寄存器,只读,用于读取GPIO引脚当前的输入电平状态。

GPIOx_ODR:输出数据寄存器,用于设置GPIO引脚当前的输出电平状态。

1个32位 置位/复位寄存器

GPIOx_BSRR :可以直接置位或复位,对其他位没影响

2个32位 复用功能配置寄存器

GPIOx_AFRH 复用功能高位寄存器(8-16)

GPIOx_AFRL 复用功能低位寄存器 (0-7)

常用寄存器详述

GPIO端口模式寄存器(GPIOx_MODER)(x=A...D,F)

偏移地址:0x00

复位值:

0xEBFF FFFF 端口A

0xFFFF FFFF 其他口

GPIO 端口输出类型寄存器 (GPIOx_OTYPER) (x = A..D,F)

偏移地址:0x04

复位值: 0x0000 0000

GPIO 口输出速度寄存器 (GPIOx_OSPEEDR) (x = A..D,F)

偏移地址:0x08

复位值: 0x0000 0000

GPIO 口上拉 / 下拉寄存器 (GPIOx_PUPDR) (x = A..D,F)

偏移地址:0x0C

复位值:

0x2400 0000 端口A

0x0000 0000 其它端口

GPIO 端口输入数据寄存器 (GPIOx_IDR) (x = A..D,F)

偏移地址:0x10

复位值: 0x0000 XXXX (X 表明不定 )

GPIO 端口输出数据寄存器 (GPIOx_ODR) (x = A..D,F)

偏移地址:0x14

复位值: 0x0000 0000

GPIO 端口置位 / 复位寄存器 (GPIOx_BSRR) (x = A..D,F)

偏移地址:0x18

复位值:0x0000 0000

【4】GPIO实验:点亮LED灯

实验步骤

1.观察开发板

查看LED灯的丝印

2.分析原理图

      找到控制LED灯的引脚编号,并通过分析电路,确定输出高/低电平信号来点亮LED。

      这里我们以PB1引脚为例,假设让芯片的PB1引脚输出低电平信号即可点亮LED灯。

3.分析寄存器

1)使能GPIOB端口时钟

RCC->IOPENR |= 1<<1;   //使能GPIOB端口时钟

2)配置GPIO模式

将PB1引脚配置为输出模式

3)配置输出类型

将PB1配置为推挽输出模式

4)配置输出数据寄存器

让PB1输出低电平信号

方式一:配置置位复位寄存器

方式二:配置输出数据寄存器

4.编写代码

5.编译下载

6.运行测试

下载完代码后,按下单片机复位键重新上电,观察LED状态。

结语

STM32的GPIO接口功能强大、配置灵活,是嵌入式系统开发中不可或缺的一部分。通过合理配置GPIO引脚的工作模式、输出类型、速度等参数,可以实现与外部设备的有效通信和控制。本文详细介绍了GPIO的概念、应用、功能及相关寄存器,并给出了一个简单的开发示例,希望能为开发者在STM32 GPIO开发过程中提供一些帮助。

创作不易,如果感觉这篇文章对你有帮助,记得点赞收藏。

这篇关于【STM32开发】GPIO最全解析及应用实例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134058

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象