字节-人工智能编辑代码方向面试-题目记录

2024-09-03 16:12

本文主要是介绍字节-人工智能编辑代码方向面试-题目记录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问的都是自己简历里写的!不会就不要写

  • 简述一下几个排序算法

  • 二分查找的时间复杂度(是O(log2n)!!!)

  • find函数和count函数的时间复杂度都是O(n),因为都是遍历整个数组来找的!!

  • 强化学习,有哪些强化学习算法(我当时用policy-based和value-based来说了)
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

  • 机器学习中,监督学习和非监督学习的区别?

    • 这就不说了,太简单
  • 哪些是监督?哪些是非监督?要会列举?

    • 监督:支持向量机 (Support Vector Machine, SVM): 用于分类和回归,目标是找到一个最优的超平面,将数据分成不同的类别。
      决策树 (Decision Tree): 用于分类和回归,模型通过学习数据的特征来构建决策树,每个节点表示一个决策条件。
      线性回归 (Linear Regression): 用于回归任务,模型学习线性关系,预测连续输出。
      逻辑回归 (Logistic Regression): 用于二分类任务,预测样本属于某个类别的概率。
      K近邻算法 (K-Nearest Neighbors, KNN): 用于分类和回归,根据距离最近的K个邻居的标签进行预测。
      朴素贝叶斯 (Naive Bayes): 基于贝叶斯定理,用于分类任务,假设特征之间是条件独立的。
    • 非监督:K-means聚类 (K-Means Clustering): 将数据分成K个簇,最小化簇内样本的方差。
      层次聚类 (Hierarchical Clustering): 通过构建树状结构(树形图)将数据聚类。
      主成分分析 (Principal Component Analysis, PCA): 一种降维技术,通过投影到主成分方向,保留数据中方差最大的方向。
      自编码器 (Autoencoder): 一种神经网络,用于学习数据的低维表示或去噪。
      密度聚类 (DBSCAN, Density-Based Spatial Clustering of Applications with Noise): 通过数据点的密度进行聚类,可以处理噪声数据。
  • 支持向量机?决策树?大致说一下?

      1. 支持向量机 (Support Vector Machine, SVM)
        基本概念:支持向量机是一种用于分类和回归的监督学习算法。其目标是找到一个能够最大化类间边界(即支持向量)的超平面,以便准确地将数据点分成不同的类别。
      1. 决策树 (Decision Tree)
        基本概念:决策树是一种树状结构的模型,用于分类和回归任务。它通过一系列的决策条件将数据递归地分割,直到每个分割的子集基本纯净(即大多数数据点属于同一类)。
  • 为什么要labled?

  • 有哪些常用的数据标注方法?

    • 在这里插入图片描述
      在这里插入图片描述
      在这里插入图片描述
      在这里插入图片描述
  • 什么是死锁?
    在这里插入图片描述

  • 如何预防死锁?(什么算法?)
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

  • 进程和线程的区别?

    • 进程 (Process) 和 线程 (Thread) 是操作系统中的基本执行单元。它们之间有许多区别,主要体现在资源分配、执行方式、以及在操作系统中的管理方式上。
    • 进程: 进程是一个正在执行的程序的实例,是操作系统资源分配的基本单位。每个进程都有自己独立的内存空间和系统资源(如文件句柄、设备等)。进程之间是相互独立的,一个进程的崩溃不会影响其他进程。
      线程: 线程是进程中的一个执行路径,是CPU调度和执行的基本单位。一个进程可以包含多个线程,多个线程共享进程的资源(如内存空间、文件句柄等),但线程之间有独立的执行栈和程序计数器。
  • 线程安全是什么?最好多说几种情况
    在这里插入图片描述
    在这里插入图片描述

  • 进程通信
    在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于字节-人工智能编辑代码方向面试-题目记录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1133419

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

字节面试 | 如何测试RocketMQ、RocketMQ?

字节面试:RocketMQ是怎么测试的呢? 答: 首先保证消息的消费正确、设计逆向用例,在验证消息内容为空等情况时的消费正确性; 推送大批量MQ,通过Admin控制台查看MQ消费的情况,是否出现消费假死、TPS是否正常等等问题。(上述都是临场发挥,但是RocketMQ真正的测试点,还真的需要探讨) 01 先了解RocketMQ 作为测试也是要简单了解RocketMQ。简单来说,就是一个分

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件

代码随想录冲冲冲 Day39 动态规划Part7

198. 打家劫舍 dp数组的意义是在第i位的时候偷的最大钱数是多少 如果nums的size为0 总价值当然就是0 如果nums的size为1 总价值是nums[0] 遍历顺序就是从小到大遍历 之后是递推公式 对于dp[i]的最大价值来说有两种可能 1.偷第i个 那么最大价值就是dp[i-2]+nums[i] 2.不偷第i个 那么价值就是dp[i-1] 之后取这两个的最大值就是d

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

题目1254:N皇后问题

题目1254:N皇后问题 时间限制:1 秒 内存限制:128 兆 特殊判题:否 题目描述: N皇后问题,即在N*N的方格棋盘内放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在同一斜线上。因为皇后可以直走,横走和斜走如下图)。 你的任务是,对于给定的N,求出有多少种合法的放置方法。输出N皇后问题所有不同的摆放情况个数。 输入