Hadoop之HDFS的原理和常用命令及API(java)

2024-09-03 15:28

本文主要是介绍Hadoop之HDFS的原理和常用命令及API(java),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、简介

        书接上回,上篇博文中介绍如何安装Hadoop和基本配置,本文介绍Hadoop中分布式文件组件--HDFS,在HDFS中,有namenode、datanode、secondnamenode这三个角色,本文将详细介绍这几个组件是如何进行协作的,以及HDFS常用命令和一些api的使用。

HDFS特点:

  • 高容错性:拥有副本机制,提高容错性;
  • 适合处理大数据量:能够处理GB、TB、PB级别的数据量;
  • 数据传输有延迟:不适合低延时数据访问;
  • 不适合大量小文件存储:文件信息都会存储在namenode中,namenode内存空间有限,而且小文件过多会导致磁盘寻址时间长;
  • 不支持文件并发写入、修改:只支持串行写,而且只支持追加,不支持修改。
2、HDFS中几个组件的原理及使用

2.1、NameNode(nn)

        NameNode是master,是HDFS中的管理者,管理HDFS文件的命令空间、文件副本策略、管理数据块映射信息、处理客户端的读写请求等。存储文件数据块元数据信息,NameNode的默认空间为128G,每个block的元数据信息占用150B。

2.2、DataNode(dn)

        datanode是执行NameNode下发的操作命令,存储实际的数据块,执行数据块的读写操作,文件块大小默认是 128Mb ,可通过 dfs.blocksize 参数设置(在 hdfs-site.xml 文件中设置)。

2.3、SecondaryNameNode(2nn)

        SecondaryNameNode并非NameNode的热备份,当NameNode挂掉的时候,辅助回复NameNode;在NameNode正常的时候,辅助NameNode,分摊NameNode工作量。

2.4、NameNode 和 SecondaryNameNode 的工作机制

        NameNode节点因为经常响应客户请求,需要及时获取请求文件的元数据信息。因此,元数据需要存放在内存中。但如果只存在内存中,一旦断电,元数据丢失,整个集群就无法工作了。因此HDFS会产生元数据备份文件存储在磁盘中,备份文件为FsImage。

        在内存中的元数据更新时,如果同时更新FsImage,就会导致效率过低,但如果不更新,就会发生一致性问题,一旦NameNode节点断电,就会产生数据丢失。因此,引入Edits文件(只进行追加操作,效率很高)。每当元数据有更新或者添加元数据时,修改内存中的元数据并追加到Edits中。这样,一旦NameNode节点断电,可以通过FsImage和Edits的合并,就能合成元数据。但是,如果长时间添加数据到Edits中,会导致该文件数据过大,效率降低,而且一旦断电,恢复元数据需要的时间过长。因此,需要定期进行FsImage和Edits的合并,如果这个操作由NameNode 节点完成,又会效率过低。因此,引入一个新的节点SecondaryNameNode,专门用于FsImage和Edits的合并。

注:第一次启动NameNode格式化后,创建Fsimage和Edits文件。

2.5、hdfs读写原理
2.5.1、读原理

2.5.2、写原理

3、HDFS常用命令

        HDFS命令可以使用 hadoop fs  也可以使用 hdfs dfs 命令。 

# 1、帮助命令
hadoop fs -help 具体命令(例如:rm、get)
# 2、上传文件(拷贝)
hadoop fs -put/copyFromLocal 本地文件 hdfs目录   
hadoop fs -put/copyFromLocal test.txt /test  
# 3、上传文件(剪切)
hadoop fs -moveFromLocal 本地文件 hdfs目录
# 4、追加文件内容
hadoop fs -appendToFile 本地文件 hdfs文件
# 5、下载
hadoop fs -get/copyToLocal HDFS文件 本地文件
# 6、hdfs类似于linux命令的操作
hadoop fs -ls/mv/rm/du/chmod/chown/mkdir/tail/cp/cat ...
4、HDFS的API操作

        关于HDFS操作使用test方式运行代码。

4.1、引入依赖
<dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>3.2.4</version>
</dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-test</artifactId><version>3.3.1</version>
</dependency><dependency><groupId>org.junit.platform</groupId><artifactId>junit-platform-launcher</artifactId><version>1.10.3</version><scope>test</scope>
</dependency>
4.2、搭建测试代码框架

        关于HDFS操作的API,可以使用fs对象进行操作,这些API都可以很快上手。对于HDFS的使用,需要根据使用场景进行一些自定义设置,需要在Configuration中指定即可

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.*;
import org.junit.jupiter.api.AfterAll;
import org.junit.jupiter.api.BeforeAll;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.TestInstance;
import org.springframework.boot.test.context.SpringBootTest;
import java.net.URI;
import java.util.Arrays;@SpringBootTest(classes = TestHDFS.class)
@TestInstance(TestInstance.Lifecycle.PER_CLASS)
public class TestHDFS {FileSystem fs;@BeforeAllpublic void init() throws  Exception{Configuration configuration = new Configuration();URI uri = new URI("hdfs://192.168.0.66:8020");fs = FileSystem.get(uri, configuration);}@AfterAllpublic void destory() throws Exception{fs.close();}@Testpublic void getStatus() throws Exception{FileStatus[] fileStatuses = fs.listStatus(new Path("/test/test.txt"));for(FileStatus status : fileStatuses){System.out.println(status.getPath());System.out.println("is directory" + status.isDirectory());System.out.println("is file" + status.isFile());}}@Testpublic void getFiles() throws Exception{RemoteIterator<LocatedFileStatus> statusRemoteIterator = fs.listFiles(new Path(("/test")), true);while (statusRemoteIterator.hasNext()) {LocatedFileStatus status = statusRemoteIterator.next();System.out.println(Arrays.toString(status.getBlockLocations()));System.out.println(status.getPath());System.out.println(status.isFile());System.out.println(status.getBlockSize());System.out.println(status.getOwner());}}
}
5、HDFS配置

        在HDFS中有几种配置文件:

  1. hdfs-default.xml:定义HDFS默认参数;
  2. hdfs-site.xml:在 etc/hadoop目录下,可以自定义配置;
  3. 在java项目中的resources目录下 hdfs-site.xml:自定义配置;
  4. 在java代码中的Configuration中指定。

几种配置文件的优先级为:1 < 2 < 3 < 4。在使用过程中需要根据使用场景来自定义参数。

6、总结

         本文详细介绍HDFS读写以及NameNode和SecondaryNameNode之间如何协调工作的原理,让大家对HDFS有了进一步了解,同时介绍HDFS一些常用命令,可以帮助我们使用命令直接操作HDFS,最后介绍如何将HDFS引入到项目中,如何在代码中实现HDFS的操作。关于更多Hadoop组件相关知识,将在后续持续更新。

       

这篇关于Hadoop之HDFS的原理和常用命令及API(java)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1133345

相关文章

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

Spring Security 基于表达式的权限控制

前言 spring security 3.0已经可以使用spring el表达式来控制授权,允许在表达式中使用复杂的布尔逻辑来控制访问的权限。 常见的表达式 Spring Security可用表达式对象的基类是SecurityExpressionRoot。 表达式描述hasRole([role])用户拥有制定的角色时返回true (Spring security默认会带有ROLE_前缀),去

浅析Spring Security认证过程

类图 为了方便理解Spring Security认证流程,特意画了如下的类图,包含相关的核心认证类 概述 核心验证器 AuthenticationManager 该对象提供了认证方法的入口,接收一个Authentiaton对象作为参数; public interface AuthenticationManager {Authentication authenticate(Authenti

Spring Security--Architecture Overview

1 核心组件 这一节主要介绍一些在Spring Security中常见且核心的Java类,它们之间的依赖,构建起了整个框架。想要理解整个架构,最起码得对这些类眼熟。 1.1 SecurityContextHolder SecurityContextHolder用于存储安全上下文(security context)的信息。当前操作的用户是谁,该用户是否已经被认证,他拥有哪些角色权限…这些都被保

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

HDFS—集群扩容及缩容

白名单:表示在白名单的主机IP地址可以,用来存储数据。 配置白名单步骤如下: 1)在NameNode节点的/opt/module/hadoop-3.1.4/etc/hadoop目录下分别创建whitelist 和blacklist文件 (1)创建白名单 [lytfly@hadoop102 hadoop]$ vim whitelist 在whitelist中添加如下主机名称,假如集群正常工作的节