(按位取反)运算的理解

2024-09-03 12:58
文章标签 理解 运算 取反 按位

本文主要是介绍(按位取反)运算的理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

(按位取反)运算的理解:

按照我平时的理解,当我使用~按位取反运算的时候,计算机会将操作数所对应的二进制表达式的每一个位进行取反计算,取反后所得到的值就是~按位取反的运算结果(这点没问题)

例如,假如我的计算机是32位的,我接下来要计算~5的值,计算过程如下:

5 的二进制表达式为:0000 0000 0000 0000 0000 0000 0000 0101

执行~运算,即~5后: 1111 1111 1111 1111 1111 1111 1111 1010,即结果为-6

以上过程没有任何问题,但我们如果忘记了负数的二进制表达方式,那么就会对这个结果产生疑问,为什么1111 1111 1111 1111 1111 1111 1111 1010表示-6,可能我们会以为它应该表示-10等等,所以,理解~按位取反的另一个关键就是理解1111 1111 1111 1111 1111 1111 1111 1010为什么表示-6,也即理解负数的二进制表达方式。

现在计算机普遍使用补码表示负数。知道一个数的补码,要求其值的方法是:首先看符号位也就是最左的一位,如果是1代表是负数(-)如果是0代码是正数(+),然后对该值取反再+1,得到其源码。

例如本例中得到的 1111 1111 1111 1111 1111 1111 1111 1010,其符号位(最左一位)是1,表明它表示的是负数,欲求其源码,需先对其取反,然后再加1:0000 0000 0000 0000 0000 0000 0000 0101 + 1 = 0000 0000 0000 0000 0000 0000 0000 0110,然后在得到的源码前加一个负号,即-0000 0000 0000 0000 0000 0000 0000 0110 = -6。以上便是对~按位取反运算以及负数的二进制表示的理解,不难发现,在求源码的时候,要将补码进行取反后再加1,然而这个补码原本就是之前由~运算时,对原来的操作数通过~按位取反而得来的,所以,此时在求该补码的源码时的取反操作,相当于将补码变回了原来的那个操作数,之后进行的加1操作就相当于对原来的操作数进行加1,只不过结果变成了他的相反数。

因此,可以总结出~按位取反的计算结论是:~n = -(n+1)

例如本例中,~5 = -(5+1),即~5 = -6
--------------------- 
出處

js取整
~是按位取反运算,~~是取反两次
在这里~~的作用是去掉小数部分
因为位运算的操作值要求是整数,其结果也是整数,所以经过位运算的都会自动变成整数
除了~~n 还可以用
n<<0
n>>0
n|0

这篇关于(按位取反)运算的理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1133017

相关文章

深入理解Apache Airflow 调度器(最新推荐)

《深入理解ApacheAirflow调度器(最新推荐)》ApacheAirflow调度器是数据管道管理系统的关键组件,负责编排dag中任务的执行,通过理解调度器的角色和工作方式,正确配置调度器,并... 目录什么是Airflow 调度器?Airflow 调度器工作机制配置Airflow调度器调优及优化建议最

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

深入理解C语言的void*

《深入理解C语言的void*》本文主要介绍了C语言的void*,包括它的任意性、编译器对void*的类型检查以及需要显式类型转换的规则,具有一定的参考价值,感兴趣的可以了解一下... 目录一、void* 的类型任意性二、编译器对 void* 的类型检查三、需要显式类型转换占用的字节四、总结一、void* 的

深入理解Redis大key的危害及解决方案

《深入理解Redis大key的危害及解决方案》本文主要介绍了深入理解Redis大key的危害及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、背景二、什么是大key三、大key评价标准四、大key 产生的原因与场景五、大key影响与危

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

uva 575 Skew Binary(位运算)

求第一个以(2^(k+1)-1)为进制的数。 数据不大,可以直接搞。 代码: #include <stdio.h>#include <string.h>const int maxn = 100 + 5;int main(){char num[maxn];while (scanf("%s", num) == 1){if (num[0] == '0')break;int len =

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝