高斯模糊实现小结

2024-09-03 12:18
文章标签 实现 模糊 小结 高斯

本文主要是介绍高斯模糊实现小结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转自:http://blog.csdn.net/zddblog/article/details/7450033

高斯模糊是一种图像滤波器,它使用正态分布(高斯函数)计算模糊模板,并使用该模板与原图像做卷积运算,达到模糊图像的目的。

N维空间正态分布方程为:

其中,σ是正态分布的标准差,σ值越大,图像越模糊(平滑)r为模糊半径,模糊半径是指模板元素到模板中心的距离。如二维模板大小为m*n,则模板上的元素(x,y)对应的高斯计算公式为:

在二维空间中,这个公式生成的曲面的等高线是从中心开始呈正态分布的同心圆。分布不为零的像素组成的卷积矩阵与原始图像做变换。每个像素的值都是周围相邻像素值的加权平均。原始像素的值有最大的高斯分布值,所以有最大的权重,相邻像素随着距离原始像素越来越远,其权重也越来越小。这样进行模糊处理比其它的均衡模糊滤波器更高地保留了边缘效果。

理论上来讲,图像中每点的分布都不为零,这也就是说每个像素的计算都需要包含整幅图像。在实际应用中,在计算高斯函数的离散近似时,在大概3σ距离之外的像素都可以看作不起作用,这些像素的计算也就可以忽略。通常,图像处理程序只需要计算(6σ+1)*(6σ+1)的矩阵就可以保证相关像素影响。

1、使用给定高斯模板平滑图像函数

σ=0.84089642的77列高斯模糊矩阵为:

现使用该模板对源图像做模糊处理,其函数如下:

[cpp]  view plain copy
在CODE上查看代码片 派生到我的代码片
  1. //高斯平滑  
  2. //未使用sigma,边缘无处理  
  3. void GaussianTemplateSmooth(const Mat &src, Mat &dst, double sigma)  
  4. {  
  5.     //高斯模板(7*7),sigma = 0.84089642,归一化后得到  
  6.     static const double gaussianTemplate[7][7] =   
  7.     {  
  8.         {0.00000067, 0.00002292, 0.00019117, 0.00038771, 0.00019117, 0.00002292, 0.00000067},  
  9.         {0.00002292, 0.00078633, 0.00655965, 0.01330373, 0.00655965, 0.00078633, 0.00002292},  
  10.         {0.00019117, 0.00655965, 0.05472157, 0.11098164, 0.05472157, 0.00655965, 0.00019117},  
  11.         {0.00038771, 0.01330373, 0.11098164, 0.22508352, 0.11098164, 0.01330373, 0.00038771},  
  12.         {0.00019117, 0.00655965, 0.05472157, 0.11098164, 0.05472157, 0.00655965, 0.00019117},  
  13.         {0.00002292, 0.00078633, 0.00655965, 0.01330373, 0.00655965, 0.00078633, 0.00002292},  
  14.         {0.00000067, 0.00002292, 0.00019117, 0.00038771, 0.00019117, 0.00002292, 0.00000067}  
  15.     };  
  16.   
  17.     dst.create(src.size(), src.type());  
  18.     uchar* srcData = src.data;  
  19.     uchar* dstData = dst.data;  
  20.   
  21.     for(int j = 0; j < src.cols-7; j++)  
  22.     {  
  23.         for(int i = 0; i < src.rows-7; i++)  
  24.         {  
  25.             double acc = 0;  
  26.             double accb = 0, accg = 0, accr = 0;   
  27.             for(int m = 0; m < 7; m++)  
  28.             {  
  29.                 for(int n = 0; n < 7; n++)  
  30.                 {  
  31.                     if(src.channels() == 1)  
  32.                         acc += *(srcData + src.step * (i+n) + src.channels() * (j+m)) * gaussianTemplate[m][n];  
  33.                     else  
  34.                     {  
  35.                         accb += *(srcData + src.step * (i+n) + src.channels() * (j+m) + 0) * gaussianTemplate[m][n];  
  36.                         accg += *(srcData + src.step * (i+n) + src.channels() * (j+m) + 1) * gaussianTemplate[m][n];  
  37.                         accr += *(srcData + src.step * (i+n) + src.channels() * (j+m) + 2) * gaussianTemplate[m][n];  
  38.                     }  
  39.                 }  
  40.             }  
  41.             if(src.channels() == 1)  
  42.                 *(dstData + dst.step * (i+3) + dst.channels() * (j+3))=(int)acc;  
  43.             else  
  44.             {  
  45.                 *(dstData + dst.step * (i+3) + dst.channels() * (j+3) + 0)=(int)accb;  
  46.                 *(dstData + dst.step * (i+3) + dst.channels() * (j+3) + 1)=(int)accg;  
  47.                 *(dstData + dst.step * (i+3) + dst.channels() * (j+3) + 2)=(int)accr;  
  48.             }  
  49.         }  
  50.     }  
  51.       
  52. }  

其效果如图1所示,7*7的高斯模板与源图像做卷积运算时,会产生半径为3的边缘,在不精确的图像处理中,可用源图像像素填充,或者去掉边缘。

2、二维高斯模糊函数

上述的例子中,如何求得高斯模糊矩阵是高斯模糊的关键。根据高斯函数的性质,图像处理程序只需要计算(6σ+1)*(6σ+1)的矩阵就可以保证相关像素影响。因此,可根据σ的值确定高斯模糊矩阵的大小。高斯矩阵可利用公式(1-2)计算,并归一化得到。归一化是保证高斯矩阵的值在[0,1]之间,

其处理函数如下:

 

[cpp]  view plain copy
在CODE上查看代码片 派生到我的代码片
  1. void GaussianSmooth2D(const Mat &src, Mat &dst, double sigma)  
  2. {  
  3.     if(src.channels() != 1)  
  4.         return;  
  5.   
  6.     //确保sigma为正数   
  7.     sigma = sigma > 0 ? sigma : 0;  
  8.     //高斯核矩阵的大小为(6*sigma+1)*(6*sigma+1)  
  9.     //ksize为奇数  
  10.     int ksize = cvRound(sigma * 3) * 2 + 1;  
  11.       
  12. //  dst.create(src.size(), src.type());  
  13.     if(ksize == 1)  
  14.     {  
  15.         src.copyTo(dst);      
  16.         return;  
  17.     }  
  18.   
  19.     dst.create(src.size(), src.type());  
  20.   
  21.     //计算高斯核矩阵  
  22.     double *kernel = new double[ksize*ksize];  
  23.   
  24.     double scale = -0.5/(sigma*sigma);  
  25.     const double PI = 3.141592653;  
  26.     double cons = -scale/PI;  
  27.   
  28.     double sum = 0;  
  29.   
  30.     for(int i = 0; i < ksize; i++)  
  31.     {  
  32.         for(int j = 0; j < ksize; j++)  
  33.         {  
  34.             int x = i-(ksize-1)/2;  
  35.             int y = j-(ksize-1)/2;  
  36.             kernel[i*ksize + j] = cons * exp(scale * (x*x + y*y));  
  37.   
  38.             sum += kernel[i*ksize+j];  
  39. //          cout << " " << kernel[i*ksize + j];  
  40.         }  
  41. //      cout <<endl;  
  42.     }  
  43.     //归一化  
  44.     for(int i = ksize*ksize-1; i >=0; i--)  
  45.     {  
  46.         *(kernel+i) /= sum;  
  47.     }  
  48.     //图像卷积运算,无边缘处理  
  49.     for(int j = 0; j < src.cols-ksize; j++)  
  50.     {  
  51.         for(int i = 0; i < src.rows-ksize; i++)  
  52.         {  
  53.             double acc = 0;  
  54.   
  55.             for(int m = 0; m < ksize; m++)  
  56.             {  
  57.                 for(int n = 0; n < ksize; n++)  
  58.                 {  
  59.                     acc += *(srcData + src.step * (i+n) + src.channels() * (j+m)) * kernel[m*ksize+n];   
  60.                 }  
  61.             }  
  62.   
  63.           
  64.             *(dstData + dst.step * (i + (ksize - 1)/2) + (j + (ksize -1)/2)) = (int)acc;  
  65.         }  
  66.     }  
  67.     delete []kernel;  
  68. }  

利用该函数,取σ=0.84089642即可得到上例中7*7的模板,该模板数据存在kernel中。利用该函数计算的归一化后的3*35*5阶高斯模板如表2,3所示:

由上表可以看出,高斯模板是中心对称的。

模糊效果如图2所示。

 

对图2中边缘的处理:

[cpp]  view plain copy
在CODE上查看代码片 派生到我的代码片
  1. ...  
[cpp]  view plain copy
在CODE上查看代码片 派生到我的代码片
  1. int center = (ksize-1) /2;  
  2. //图像卷积运算,处理边缘  
  3. for(int j = 0; j < src.cols; j++)  
  4. {  
  5.     for(int i = 0; i < src.rows; i++)  
  6.     {  
  7.         double acc = 0;  
  8.   
  9.         for(int m = -center, c = 0; m <= center; m++, c++)  
  10.         {  
  11.             for(int n = -center, r = 0; n <= center; n++, r++)  
  12.             {  
  13.                 if((i+n) >=0 && (i+n) < src.rows && (j+m) >=0 && (j+m) < src.cols)  
  14.                 {  
  15.                       
  16.                     acc += *(srcData + src.step * (i+n) + src.channels() * (j+m)) * kernel[r*ksize+c];   
  17.               
  18.                 }  
  19.             }  
  20.         }  
  21.   
  22.   
  23.         *(dstData + dst.step * (i) + (j)) = (int)acc;  
  24.     }  
  25. }  
[cpp]  view plain copy
在CODE上查看代码片 派生到我的代码片
  1. ...  


结果图为:

如上图所示,边缘明显变窄,但是存在黑边。

3、改进的高斯模糊函数

上述的二维高斯模糊函数GaussianSmooth2D达到了高斯模糊图像的目的,但是如图2所示,会因模板的关系而造成边缘图像缺失,σ越大,缺失像素越多,额外的边缘处理会增加计算量。并且当σ变大时,高斯模板(高斯核)和卷积运算量将大幅度提高。根据高斯函数的可分离性,可对二维高斯模糊函数进行改进。

高斯函数的可分离性是指使用二维矩阵变换得到的效果也可以通过在水平方向进行一维高斯矩阵变换加上竖直方向的一维高斯矩阵变换得到。从计算的角度来看,这是一项有用的特性,因为这样只需要O(n*M*n)+O(m*M*N)次计算,而二维不可分的矩阵则需要O(m*n*M*n)次计算,其中,m,n为高斯矩阵的维数,M,N为二维图像的维数。

另外,两次一维的高斯卷积将消除二维高斯矩阵所产生的边缘。

(关于消除边缘的论述如下图2.4所示, 对用模板矩阵超出边界的部分——虚线框,将不做卷积计算。如图2.4中x方向的第一个模板1*5,将退化成1*3的模板,只在图像之内的部分做卷积。)


改进的高斯模糊函数如下:

[cpp]  view plain copy
在CODE上查看代码片 派生到我的代码片
  1. void GaussianSmooth(const Mat &src, Mat &dst, double sigma)  
  2. {  
  3.     if(src.channels() != 1 && src.channels() != 3)  
  4.         return;  
  5.   
  6.     //  
  7.     sigma = sigma > 0 ? sigma : -sigma;  
  8.     //高斯核矩阵的大小为(6*sigma+1)*(6*sigma+1)  
  9.     //ksize为奇数  
  10.     int ksize = ceil(sigma * 3) * 2 + 1;  
  11.   
  12.     //cout << "ksize=" <<ksize<<endl;  
  13.     //  dst.create(src.size(), src.type());  
  14.     if(ksize == 1)  
  15.     {  
  16.         src.copyTo(dst);      
  17.         return;  
  18.     }  
  19.   
  20.     //计算一维高斯核  
  21.     double *kernel = new double[ksize];  
  22.   
  23.     double scale = -0.5/(sigma*sigma);  
  24.     const double PI = 3.141592653;  
  25.     double cons = 1/sqrt(-scale / PI);  
  26.   
  27.     double sum = 0;  
  28.     int kcenter = ksize/2;  
  29.     int i = 0, j = 0;  
  30.     for(i = 0; i < ksize; i++)  
  31.     {  
  32.         int x = i - kcenter;  
  33.         *(kernel+i) = cons * exp(x * x * scale);//一维高斯函数  
  34.         sum += *(kernel+i);  
  35.   
  36. //      cout << " " << *(kernel+i);  
  37.     }  
  38. //  cout << endl;  
  39.     //归一化,确保高斯权值在[0,1]之间  
  40.     for(i = 0; i < ksize; i++)  
  41.     {  
  42.         *(kernel+i) /= sum;  
  43. //      cout << " " << *(kernel+i);  
  44.     }  
  45. //  cout << endl;  
  46.   
  47.     dst.create(src.size(), src.type());  
  48.     Mat temp;  
  49.     temp.create(src.size(), src.type());  
  50.   
  51.     uchar* srcData = src.data;  
  52.     uchar* dstData = dst.data;  
  53.     uchar* tempData = temp.data;  
  54.   
  55.     //x方向一维高斯模糊  
  56.     for(int y = 0; y < src.rows; y++)  
  57.     {  
  58.         for(int x = 0; x < src.cols; x++)  
  59.         {  
  60.             double mul = 0;  
  61.             sum = 0;  
  62.             double bmul = 0, gmul = 0, rmul = 0;  
  63.             for(i = -kcenter; i <= kcenter; i++)  
  64.             {  
  65.                 if((x+i) >= 0 && (x+i) < src.cols)  
  66.                 {  
  67.                     if(src.channels() == 1)  
  68.                     {  
  69.                         mul += *(srcData+y*src.step+(x+i))*(*(kernel+kcenter+i));  
  70.                     }  
  71.                     else   
  72.                     {  
  73.                         bmul += *(srcData+y*src.step+(x+i)*src.channels() + 0)*(*(kernel+kcenter+i));  
  74.                         gmul += *(srcData+y*src.step+(x+i)*src.channels() + 1)*(*(kernel+kcenter+i));  
  75.                         rmul += *(srcData+y*src.step+(x+i)*src.channels() + 2)*(*(kernel+kcenter+i));  
  76.                     }  
  77.                     sum += (*(kernel+kcenter+i));  
  78.                 }  
  79.             }  
  80.             if(src.channels() == 1)  
  81.             {  
  82.                 *(tempData+y*temp.step+x) = mul/sum;  
  83.             }  
  84.             else  
  85.             {  
  86.                 *(tempData+y*temp.step+x*temp.channels()+0) = bmul/sum;  
  87.                 *(tempData+y*temp.step+x*temp.channels()+1) = gmul/sum;  
  88.                 *(tempData+y*temp.step+x*temp.channels()+2) = rmul/sum;  
  89.             }  
  90.         }  
  91.     }  
  92.   
  93.       
  94.     //y方向一维高斯模糊  
  95.     for(int x = 0; x < temp.cols; x++)  
  96.     {  
  97.         for(int y = 0; y < temp.rows; y++)  
  98.         {  
  99.             double mul = 0;  
  100.             sum = 0;  
  101.             double bmul = 0, gmul = 0, rmul = 0;  
  102.             for(i = -kcenter; i <= kcenter; i++)  
  103.             {  
  104.                 if((y+i) >= 0 && (y+i) < temp.rows)  
  105.                 {  
  106.                     if(temp.channels() == 1)  
  107.                     {  
  108.                         mul += *(tempData+(y+i)*temp.step+x)*(*(kernel+kcenter+i));  
  109.                     }  
  110.                     else  
  111.                     {  
  112.                         bmul += *(tempData+(y+i)*temp.step+x*temp.channels() + 0)*(*(kernel+kcenter+i));  
  113.                         gmul += *(tempData+(y+i)*temp.step+x*temp.channels() + 1)*(*(kernel+kcenter+i));  
  114.                         rmul += *(tempData+(y+i)*temp.step+x*temp.channels() + 2)*(*(kernel+kcenter+i));  
  115.                     }  
  116.                     sum += (*(kernel+kcenter+i));  
  117.                 }  
  118.             }  
  119.             if(temp.channels() == 1)  
  120.             {  
  121.                 *(dstData+y*dst.step+x) = mul/sum;  
  122.             }  
  123.             else  
  124.             {  
  125.                 *(dstData+y*dst.step+x*dst.channels()+0) = bmul/sum;  
  126.                 *(dstData+y*dst.step+x*dst.channels()+1) = gmul/sum;  
  127.                 *(dstData+y*dst.step+x*dst.channels()+2) = rmul/sum;  
  128.             }  
  129.           
  130.         }  
  131.     }  
  132.       
  133.     delete[] kernel;  
  134. }  

该函数中使用的水平方向和垂直方向的高斯矩阵为同一矩阵,实际计算时可根据需要取不同。

模糊效果如图3所示:

比较

使用GetTickCount()进行比较,GetTickCount()函数的精度为1ms。

以下表格中的数据均为作者机器上的某两次运行结果取均值,编程环境为vs2010+opencv2.2


上表中Debug版本的GaussianTemplateSmooth竟然比GaussianSmooth2D运行时间长,难道是二维数组比不上一维指针,或者是Debug版本的问题?实验结果确实如上。

将本文所写函数与opencv2.2提供的高斯模糊函数GaussianBlur一起进行比较。

结论

如上表4,5所示,对GaussianSmooth2D的改进函数GaussianSmooth,越大时,提速效果越明显,这种速度的改进在Debug模式下尤为明显。无论是在Debug,还是在Release模式下,Opencv2.2提供的GaussianBlur完胜本文所用的函数。建议在学习算法时参考本文内容,实际项目中使用GaussianBlur

 

本例代码键连接:http://download.csdn.net/detail/zddmail/4217704


这篇关于高斯模糊实现小结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1132935

相关文章

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略 1. 特权模式限制2. 宿主机资源隔离3. 用户和组管理4. 权限提升控制5. SELinux配置 💖The Begin💖点点关注,收藏不迷路💖 Kubernetes的PodSecurityPolicy(PSP)是一个关键的安全特性,它在Pod创建之前实施安全策略,确保P

工厂ERP管理系统实现源码(JAVA)

工厂进销存管理系统是一个集采购管理、仓库管理、生产管理和销售管理于一体的综合解决方案。该系统旨在帮助企业优化流程、提高效率、降低成本,并实时掌握各环节的运营状况。 在采购管理方面,系统能够处理采购订单、供应商管理和采购入库等流程,确保采购过程的透明和高效。仓库管理方面,实现库存的精准管理,包括入库、出库、盘点等操作,确保库存数据的准确性和实时性。 生产管理模块则涵盖了生产计划制定、物料需求计划、

C++——stack、queue的实现及deque的介绍

目录 1.stack与queue的实现 1.1stack的实现  1.2 queue的实现 2.重温vector、list、stack、queue的介绍 2.1 STL标准库中stack和queue的底层结构  3.deque的简单介绍 3.1为什么选择deque作为stack和queue的底层默认容器  3.2 STL中对stack与queue的模拟实现 ①stack模拟实现