LRU和LFU的实现及优缺点

2024-09-03 12:04
文章标签 实现 优缺点 lru lfu

本文主要是介绍LRU和LFU的实现及优缺点,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

计算机内部有很多使用缓存的地方,缓存能够保证系统的快速运转。但是一个缓存组件是否好用,取决于它的缓存命中率,而命中率又和缓存组件自己的缓存数据淘汰算法息息相关。常用的缓存算法有:FIFO、LRU、LFU。

FIFO

先进先出算法FIFO(First In First Out)的基本思想是:选择最早调入内存的页面淘汰。
类似于队列的思想,所以实现起来也不困难。

我们通过一个操作系统内的页面置换算法例子来说明一下吧:

这里会导致Belady现象:如果FIFO算法将页面容量增大,缺页率反而升高。

原因如下:FIFO算法的置换特征与进程访问内存的动态特征是矛盾的,即被置换的页面并不是进程不会访问的。

LRU

基本原理和场景应用

最近最少使用算法(Least recently used)在vue前端框架的keep-alive内置组件中使用。

我们在使用vue框架使用组件切换,将页面切换前的状态保留在内存中,使用就是LRU算法。

这样做的好处就是:防止浏览器做重复的工作再次渲染页面,从而减少了加载的时间以及减少了计算机的性能消耗,提高了用户的体验。

一个应用场景在计算机底层——页面置换算法,我们现在应用都是从底层算法设计启发而来。比如Java中有一个LinkedHashMap数据结构的实现原理就是使用LRU算法实现的。此数据结构的实现是通过双向链表和哈希表实现的,具体的可以去看LinkedHashMap源码(面试八股文之一)。

举个关于页面置换算法的例子:

更加形象的解释如下:

 

LRU 算法的常见实现

  • 通常使用链表或者栈的数据结构来实现。

  • 当一个数据被访问时,将其移动到链表或栈的顶部,表示它是最近被使用的。

  • 这样,在需要淘汰数据时,只需要从链表或栈的底部移除即可。

  • 例如,在一些数据库缓存系统中,就采用了基于链表的 LRU 实现方式,通过高效的节点移动操作来保持数据的访问顺序。

import java.util.LinkedHashMap;
import java.util.Map;public class LRUCache<K, V> extends LinkedHashMap<K, V> {private int capacity;public LRUCache(int capacity) {super(capacity, 0.75f, true);this.capacity = capacity;}@Overrideprotected boolean removeEldestEntry(Map.Entry<K, V> eldest) {return size() > capacity;}public static void main(String[] args) {LRUCache<Integer, String> lruCache = new LRUCache<>(3);lruCache.put(1, "One");lruCache.put(2, "Two");lruCache.put(3, "Three");System.out.println("LRU Cache: " + lruCache);lruCache.get(1);  // Accessing 1 to make it the most recently usedlruCache.put(4, "Four");  // Adding a new entry, which should trigger LRU evictionSystem.out.println("LRU Cache after eviction: " + lruCache);}
}

 LFU

LFU算法的基本原理

最不频繁使用算法LFU(Least Frequently Used)在执行淘汰元素的时候,会把最不频繁使用的元素直接删掉,若存在队列中两个元素使用频率相同且最低,那就使用最近使用的时间对元素进行排序,很久没有使用直接删掉此元素。
借用Leetcode上面的题解一张图,这张图可以形象的介绍LFU算法的原理:

LFU 算法的常见实现

  • 一般需要维护一个计数器来记录每个数据的访问次数。

  • 当数据被访问时,对应的计数器就会增加。

  • 在淘汰数据时,选择访问次数最少的那些数据进行清理。

  • 一些缓存框架会使用复杂的数据结构,如带有计数器的哈希表,来实现 LFU 算法,以便快速地查找和更新访问次数。


import java.util.LinkedHashMap;
import java.util.Map;public class LFUCache<K, V> {private final int capacity;private final Map<K, V> cache;private final Map<K, Integer> frequency;public LFUCache(int capacity) {this.capacity = capacity;this.cache = new LinkedHashMap<>(capacity, 0.75f, true);this.frequency = new HashMap<>();}public V get(K key) {if (!cache.containsKey(key)) {return null;}int currentFreq = frequency.getOrDefault(key, 0);frequency.put(key, currentFreq + 1);return cache.get(key);}public void put(K key, V value) {if (capacity <= 0) return;if (cache.size() >= capacity) {evictLFU();}cache.put(key, value);frequency.put(key, 1);}private void evictLFU() {K keyToRemove = null;int minFreq = Integer.MAX_VALUE;for (Map.Entry<K, Integer> entry : frequency.entrySet()) {if (entry.getValue() < minFreq) {keyToRemove = entry.getKey();minFreq = entry.getValue();}}if (keyToRemove != null) {cache.remove(keyToRemove);frequency.remove(keyToRemove);}}public static void main(String[] args) {LFUCache<Integer, String> lfuCache = new LFUCache<>(3);lfuCache.put(1, "One");lfuCache.put(2, "Two");lfuCache.put(3, "Three");System.out.println("LFU Cache: " + lfuCache.cache);lfuCache.get(1);  // Accessing 1 to increase its frequencylfuCache.get(2);  // Accessing 2 to increase its frequencylfuCache.put(4, "Four");  // Adding a new entry, which should trigger LFU evictionSystem.out.println("LFU Cache after eviction: " + lfuCache.cache);}
}

 优缺点对比

  1. LRU 算法的优点

    • 实现相对简单,只需要维护一个数据的访问时间顺序即可。

    • 对于突然的访问模式变化能够快速适应,因为它只关注最近的访问情况。

    • 在一些需要快速响应的系统中,LRU 算法能够迅速调整缓存内容,以满足用户的最新需求。

  2. LRU 算法的缺点

    • 可能会受到数据访问的周期性影响。例如,如果一个数据在一段时间内没有被访问,但实际上它在未来可能会再次被频繁使用,LRU 算法可能会因为它的“最近未使用”状态而将其淘汰,导致缓存命中率降低。

    • 对于一些偶尔被访问一次但具有长期价值的数据,LRU 算法也可能会错误地将其淘汰。

  3. LFU 算法的优点

    • 能够更准确地反映数据的长期访问模式,对于那些访问频率稳定的应用场景非常适用。

    • 可以更好地保留那些真正具有高价值的、经常被访问的数据,提高缓存的命中率。

    • 在一些数据访问模式相对固定的系统中,LFU 算法能够提供更稳定的缓存性能。

  4. LFU 算法的缺点

    • 实现相对复杂,需要额外的空间来存储数据的访问次数等信息。

    • 对于访问频率突然变化的情况反应较慢。例如,如果一个冷门数据突然变得热门,LFU 算法可能需要一段时间才能根据其增加的访问次数将其保留在缓存中,在此期间可能会导致用户体验下降。

    • 可能会受到数据访问的初始阶段影响。一个新的数据在开始时访问次数较少,可能会被 LFU 算法过早地淘汰,即使它在未来可能会变得非常重要。

综上所述,LRU 算法和 LFU 算法在缓存淘汰策略中各有优劣,我们需要根据具体的应用场景和需求来选择合适的算法。在实际应用中,也可以根据情况对这两种算法进行适当的优化和调整,或者结合使用,以达到最佳的缓存管理效果。

这篇关于LRU和LFU的实现及优缺点的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1132921

相关文章

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

golang版本升级如何实现

《golang版本升级如何实现》:本文主要介绍golang版本升级如何实现问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录golanwww.chinasem.cng版本升级linux上golang版本升级删除golang旧版本安装golang最新版本总结gola

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分

MySQL 定时新增分区的实现示例

《MySQL定时新增分区的实现示例》本文主要介绍了通过存储过程和定时任务实现MySQL分区的自动创建,解决大数据量下手动维护的繁琐问题,具有一定的参考价值,感兴趣的可以了解一下... mysql创建好分区之后,有时候会需要自动创建分区。比如,一些表数据量非常大,有些数据是热点数据,按照日期分区MululbU

MySQL中查找重复值的实现

《MySQL中查找重复值的实现》查找重复值是一项常见需求,比如在数据清理、数据分析、数据质量检查等场景下,我们常常需要找出表中某列或多列的重复值,具有一定的参考价值,感兴趣的可以了解一下... 目录技术背景实现步骤方法一:使用GROUP BY和HAVING子句方法二:仅返回重复值方法三:返回完整记录方法四:

IDEA中新建/切换Git分支的实现步骤

《IDEA中新建/切换Git分支的实现步骤》本文主要介绍了IDEA中新建/切换Git分支的实现步骤,通过菜单创建新分支并选择是否切换,创建后在Git详情或右键Checkout中切换分支,感兴趣的可以了... 前提:项目已被Git托管1、点击上方栏Git->NewBrancjsh...2、输入新的分支的

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方