区块链 以太坊 区块结构详解

2024-09-03 09:32
文章标签 详解 区块 结构 以太

本文主要是介绍区块链 以太坊 区块结构详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

一、结构

区块由两部分组成,分别是

  • 区块头(header)
  • 区块体(body)

1. 结构图

preview

 

 

 

2. 区块头(header)

区块头存储了区块的元信息,用来对区块内容进行一些标识,校验,说明等。

通用字段

  • ParentHash: 父区块的哈希值。
  • Root:世界状态的哈希,stateDB的RLP编码后的哈希值。
  • TxHash(transaction root hash):交易字典树的根哈希,由本区块所有交易的交易哈希算出。
  • ReceptHash:收据树的哈希。
  • Time:区块产生出来的Unix时间戳。
  • Number:区块号。
  • Bloom:布隆过滤器,快速定位日志是否在这个区块中。

公链场景

  • Coinbase:挖出这个块的矿工地址,因为挖出块所奖励的ETH就会发放到这个地址。
  • Difficulty:当前工作量证明(Pow)算法的复杂度。
  • GasLimit: 每个区块Gas的消耗上线。
  • GasUsed:当前区块所有交易使用的Gas之和。
  • MixDigest: 挖矿得到的Pow算法证明的摘要,也就是挖矿的工作量证明。
  • nonce:挖矿找到的满足条件的值。
  • Uncle:叔块是和以太坊的共识算法相关。

 

3. 区块体(Body)

区块体包括这个区块打包的所有交易,在一些链的设计中,并不像以太坊区分header和body,而是整合在一起。

 

二、区块存储

以太坊在存储区块的时候,区块头和区块体其实是分开存储的,其实也很容易理解,分开存储可以提供更多的灵活性,比如不用保存全部区块数据的轻节点。

1. 区块头存储

以太坊通过如下方式将区块头转换成键值对存储在LevelDB中;

headerPrefix + num + hash  -> rlp(header)
Tips: num是以大端序的形式转换成bytes的,其中headerPrefix的值是 []byte("h")


2. 区块体存储

区块体的存储方式也是类似;

bodyPrefix + num + hash -> rlp(block)
Tips: num是以大端序的形式转换成bytes的,其中bodyPrefix的值是[]byte("b")

 

3. 潜在问题

假设在一个联盟链的场景下,采用了BFT类的算法,有一个重量级的业务跑在上面,日积月累产生了大量的数据,是否会出现

  • LevelDB的读写性能大幅下降拖慢系统的响应速度?
  • 单机存储无法满足需要?
  • 存储了大量的不会使用的历史数据?

 

在联盟链的场景下,由于共识速度的提升,导致出块速度也大幅提升,原本在公链场景下不存在的区块写入瓶颈,现在反而成了拖慢系统运行速度的重要因素了。

观察一下区块数据的存储就可以发现下面的这些特点;

  • 区块数据只会增加;
  • 无需对历史区块进行修改;
  • 无需对区块数据进行复杂操作,比如聚合,运算等;

归纳一下就是

  • 顺序写
  • 随机读
  • 迭代(Iterator)

 

针对这些特点Hyperledger Fabric设计了基于文件的存储方式,在Fabric中区块数据是以一个个文件的形式存在。

chains|----mychannel|----|----blockfile_000000
index|----000001.log|----CURRENT|----LOCK|----LOG|----MANIFEST-000000

其中blockfile_000000是区块数据,index则是索引游标等元信息。

这种方式速度很快,方便做数据归档,也可以避免像LevelDB等数据库数据越写越慢的问题,主流联盟链都是采用类似的方案。

 

 

 

区块详解:

https://blog.csdn.net/weixin_41806245/article/details/80899500

 

以太坊解析:默克尔树、世界状态、交易及其他

https://www.cnblogs.com/ccbupt/p/11468791.html

 

内容来自

以太坊区块结构

https://zhuanlan.zhihu.com/p/89698073

这篇关于区块链 以太坊 区块结构详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1132633

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

【区块链 + 人才服务】区块链集成开发平台 | FISCO BCOS应用案例

随着区块链技术的快速发展,越来越多的企业开始将其应用于实际业务中。然而,区块链技术的专业性使得其集成开发成为一项挑战。针对此,广东中创智慧科技有限公司基于国产开源联盟链 FISCO BCOS 推出了区块链集成开发平台。该平台基于区块链技术,提供一套全面的区块链开发工具和开发环境,支持开发者快速开发和部署区块链应用。此外,该平台还可以提供一套全面的区块链开发教程和文档,帮助开发者快速上手区块链开发。

K8S(Kubernetes)开源的容器编排平台安装步骤详解

K8S(Kubernetes)是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。以下是K8S容器编排平台的安装步骤、使用方式及特点的概述: 安装步骤: 安装Docker:K8S需要基于Docker来运行容器化应用程序。首先要在所有节点上安装Docker引擎。 安装Kubernetes Master:在集群中选择一台主机作为Master节点,安装K8S的控制平面组件,如AP

自定义类型:结构体(续)

目录 一. 结构体的内存对齐 1.1 为什么存在内存对齐? 1.2 修改默认对齐数 二. 结构体传参 三. 结构体实现位段 一. 结构体的内存对齐 在前面的文章里我们已经讲过一部分的内存对齐的知识,并举出了两个例子,我们再举出两个例子继续说明: struct S3{double a;int b;char c;};int mian(){printf("%zd\n",s

嵌入式Openharmony系统构建与启动详解

大家好,今天主要给大家分享一下,如何构建Openharmony子系统以及系统的启动过程分解。 第一:OpenHarmony系统构建      首先熟悉一下,构建系统是一种自动化处理工具的集合,通过将源代码文件进行一系列处理,最终生成和用户可以使用的目标文件。这里的目标文件包括静态链接库文件、动态链接库文件、可执行文件、脚本文件、配置文件等。      我们在编写hellowor

LabVIEW FIFO详解

在LabVIEW的FPGA开发中,FIFO(先入先出队列)是常用的数据传输机制。通过配置FIFO的属性,工程师可以在FPGA和主机之间,或不同FPGA VIs之间进行高效的数据传输。根据具体需求,FIFO有多种类型与实现方式,包括目标范围内FIFO(Target-Scoped)、DMA FIFO以及点对点流(Peer-to-Peer)。 FIFO类型 **目标范围FIFO(Target-Sc