四则运算-栈方法 JAVA

2024-09-03 03:38
文章标签 java 方法 四则运算

本文主要是介绍四则运算-栈方法 JAVA,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

栈的规则是先进后出。利用压栈的思想来计算四则运算表达式方法如下:创建两个栈,一个存放四则表达式的数字,另一个存放对应的操作符。
例如一个表达是(3-1)*6-8/4,那么就将这个表达是的数字和操作符分别压入各自的栈,压栈规则如下:
1>遇到数字则直接压入数字栈顶;
2>遇到运算符(+-*/)时,若操作符栈为空,则直接放入操作符栈顶,否则,见3;
3>若操作符栈顶元素的优先级比当前运算符的优先级小,则直接压入栈顶,否则执行步骤4;
4>弹出数字栈顶的两个数字并弹出操作符栈顶的运算符进行计算,把运算结果压入数字栈顶,重复2、3直到当前运算符被压入操作符栈顶;
5>遇到左括号“(”时,直接压入操作符栈顶;
6>遇到右括号”)”时,则依次弹出操作符栈顶的运算符运算数字栈的最顶上两个数字,直到弹出的操作符为左括号;
下面是利用java.util.vector和java.util.Stack实现的四则运算

import java.util.HashMap;  
import java.util.Map;  
import java.util.Stack;  
import java.util.StringTokenizer;  
import java.util.Vector;  
import java.util.regex.Pattern;  public class Test {  public static void main(String args[]) {  String computeExpr = "1 + 5 * 6 + 3 * (2 + 3*2+2-1+3*3) + 10/5 - 6*1";  Test test = new Test();  double result1 = test.computeWithVector(computeExpr);  double result2 = test.computeWithStack(computeExpr);  System.out.println(result1 + "=======" + result2);  }  /** * 利用java.util.Vector计算四则运算字符串表达式的值,如果抛出异常,则说明表达式有误,这里就没有控制 * @param computeExpr 四则运算字符串表达式 * @return 计算结果 */  public double computeWithVector(String computeExpr) {  StringTokenizer tokenizer = new StringTokenizer(computeExpr, "+-*/()", true);  Vector<Double> nums = new Vector<Double>();  Vector<Operator> operators = new Vector<Operator>();  Map<String, Operator> computeOper = this.getComputeOper();  Operator curOper;  String currentEle;  while (tokenizer.hasMoreTokens()) {  currentEle = tokenizer.nextToken().trim();  if (!"".equals(currentEle)) {//只处理非空字符  if (this.isNum(currentEle)) { // 数字  nums.add(Double.valueOf(currentEle));  } else { // 非数字,即括号或者操作符  curOper = computeOper.get(currentEle);  if (curOper != null) { // 是运算符  // 运算列表不为空且之前的运算符优先级较高则先计算之前的优先级  while (!operators.isEmpty()  && operators.lastElement().priority() >= curOper  .priority()) {  compute(nums, operators);  }  // 把当前运算符放在运算符队列的末端  operators.add(curOper);  } else { // 括号  if ("(".equals(currentEle)) { // 左括号时直接放入操作列表中  operators.add(Operator.BRACKETS);  } else {// 当是右括号的时候就把括号里面的内容执行了。  // 循环执行括号里面的内容直到遇到左括号为止。试想这种情况(2+5*2)  while (!operators.lastElement().equals(Operator.BRACKETS)) {  compute(nums, operators);  }  //移除左括号  operators.remove(operators.size()-1);  }  }  }  }  }  // 经过上面代码的遍历后最后的应该是nums里面剩两个数或三个数,operators里面剩一个或两个运算操作符  while (!operators.isEmpty()) {  compute(nums, operators);  }  return nums.firstElement();  }  /** * 利用java.util.Stack计算四则运算字符串表达式的值,如果抛出异常,则说明表达式有误,这里就没有控制 * java.util.Stack其实也是继承自java.util.Vector的。 * @param computeExpr 四则运算字符串表达式 * @return 计算结果 */  public double computeWithStack(String computeExpr) {  //把表达式用运算符、括号分割成一段一段的,并且分割后的结果包含分隔符  StringTokenizer tokenizer = new StringTokenizer(computeExpr, "+-*/()", true);  Stack<Double> numStack = new Stack<Double>();   //用来存放数字的栈  Stack<Operator> operStack = new Stack<Operator>();  //存放操作符的栈  Map<String, Operator> computeOper = this.getComputeOper();    //获取运算操作符  String currentEle;  //当前元素  while (tokenizer.hasMoreTokens()) {  currentEle = tokenizer.nextToken().trim();  //去掉前后的空格  if (!"".equals(currentEle)) {   //只处理非空字符  if (this.isNum(currentEle)) { //为数字时则加入到数字栈中  numStack.push(Double.valueOf(currentEle));  } else { //操作符  Operator currentOper = computeOper.get(currentEle);//获取当前运算操作符  if (currentOper != null) {  //不为空时则为运算操作符  while (!operStack.empty() && operStack.peek().priority() >= currentOper.priority()) {  compute(numStack, operStack);  }  //计算完后把当前操作符加入到操作栈中  operStack.push(currentOper);  } else {//括号  if ("(".equals(currentEle)) { //左括号时加入括号操作符到栈顶  operStack.push(Operator.BRACKETS);  } else { //右括号时, 把左括号跟右括号之间剩余的运算符都执行了。  while (!operStack.peek().equals(Operator.BRACKETS)) {  compute(numStack, operStack);  }  operStack.pop();//移除栈顶的左括号  }  }  }  }  }  // 经过上面代码的遍历后最后的应该是nums里面剩两个数或三个数,operators里面剩一个或两个运算操作符  while (!operStack.empty()) {  compute(numStack, operStack);  }  return numStack.pop();  }  /** * 判断一个字符串是否是数字类型 * @param str * @return */  private boolean isNum(String str) {  String numRegex = "^\\d+(\\.\\d+)?$";   //数字的正则表达式  return Pattern.matches(numRegex, str);  }  /** * 获取运算操作符 * @return */  private Map<String, Operator> getComputeOper() {  return new HashMap<String, Operator>() { // 运算符  private static final long serialVersionUID = 7706718608122369958L;  {  put("+", Operator.PLUS);  put("-", Operator.MINUS);  put("*", Operator.MULTIPLY);  put("/", Operator.DIVIDE);  }  };  }  /** * 取nums的最后两个数字,operators的最后一个运算符进行运算,然后把运算结果再放到nums列表的末端 * @param nums * @param operators */  private void compute(Vector<Double> nums, Vector<Operator> operators) {  Double num2 = nums.remove(nums.size() - 1); // 第二个数字,当前队列的最后一个数字  Double num1 = nums.remove(nums.size() - 1); // 第一个数字,当前队列的最后一个数字  Double computeResult = operators.remove(operators.size() - 1).compute(  num1, num2); // 取最后一个运算符进行计算  nums.add(computeResult); // 把计算结果重新放到队列的末端  }  /** * 取numStack的最顶上两个数字,operStack的最顶上一个运算符进行运算,然后把运算结果再放到numStack的最顶端 * @param numStack  数字栈 * @param operStack 操作栈 */  private void compute(Stack<Double> numStack, Stack<Operator> operStack) {  Double num2 = numStack.pop(); // 弹出数字栈最顶上的数字作为运算的第二个数字  Double num1 = numStack.pop(); // 弹出数字栈最顶上的数字作为运算的第一个数字  Double computeResult = operStack.pop().compute(  num1, num2); // 弹出操作栈最顶上的运算符进行计算  numStack.push(computeResult); // 把计算结果重新放到队列的末端  }  /** * 运算符 */  private enum Operator {  /** * 加 */  PLUS {  @Override  public int priority() {  return 1;   }  @Override  public double compute(double num1, double num2) {  return num1 + num2;   }  },  /** * 减 */  MINUS {  @Override  public int priority() {  return 1;   }  @Override  public double compute(double num1, double num2) {  return num1 - num2;   }  },  /** * 乘 */  MULTIPLY {  @Override  public int priority() {  return 2;   }  @Override  public double compute(double num1, double num2) {  return num1 * num2;   }  },  /** * 除 */  DIVIDE {  @Override  public int priority() {  return 2;   }  @Override  public double compute(double num1, double num2) {  return num1 / num2;   }  },  /** * 括号 */  BRACKETS {  @Override  public int priority() {  return 0;   }  @Override  public double compute(double num1, double num2) {  return 0;   }  };  /** * 对应的优先级 * @return */  public abstract int priority();  /** * 计算两个数对应的运算结果 * @param num1  第一个运算数 * @param num2  第二个运算数 * @return */  public abstract double compute(double num1, double num2);  }  
}

这篇关于四则运算-栈方法 JAVA的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1131923

相关文章

详解Java如何向http/https接口发出请求

《详解Java如何向http/https接口发出请求》这篇文章主要为大家详细介绍了Java如何实现向http/https接口发出请求,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 用Java发送web请求所用到的包都在java.net下,在具体使用时可以用如下代码,你可以把它封装成一

Window Server2016加入AD域的方法步骤

《WindowServer2016加入AD域的方法步骤》:本文主要介绍WindowServer2016加入AD域的方法步骤,包括配置DNS、检测ping通、更改计算机域、输入账号密码、重启服务... 目录一、 准备条件二、配置ServerB加入ServerA的AD域(test.ly)三、查看加入AD域后的变

Window Server2016 AD域的创建的方法步骤

《WindowServer2016AD域的创建的方法步骤》本文主要介绍了WindowServer2016AD域的创建的方法步骤,文中通过图文介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、准备条件二、在ServerA服务器中常见AD域管理器:三、创建AD域,域地址为“test.ly”

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

java脚本使用不同版本jdk的说明介绍

《java脚本使用不同版本jdk的说明介绍》本文介绍了在Java中执行JavaScript脚本的几种方式,包括使用ScriptEngine、Nashorn和GraalVM,ScriptEngine适用... 目录Java脚本使用不同版本jdk的说明1.使用ScriptEngine执行javascript2.

Spring MVC如何设置响应

《SpringMVC如何设置响应》本文介绍了如何在Spring框架中设置响应,并通过不同的注解返回静态页面、HTML片段和JSON数据,此外,还讲解了如何设置响应的状态码和Header... 目录1. 返回静态页面1.1 Spring 默认扫描路径1.2 @RestController2. 返回 html2