解析C++内联函数与auto关键字

2024-09-02 19:44

本文主要是介绍解析C++内联函数与auto关键字,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🌈个人主页:Yui_
🌈Linux专栏:Linux
🌈C语言笔记专栏:C语言笔记
🌈数据结构专栏:数据结构
🌈C++专栏:C++

文章目录

  • 1. 内联函数
    • 1.1 概念
    • 1.2 内联的特性
    • 1.3 内联与宏
  • 2. auto关键字(C++11)
    • 2.1 类型别名思考
    • 2.2 auto介绍
    • 2.3 auto的使用规则
    • 2.3 auto不能推导的场景
  • 3.基于范围的for循环(C++11)
    • 3.1 范围for的语法
    • 3.2 范围for的使用条件
  • 4. 指针空值nullptr
    • 4.1 C++98中的指针空值

1. 内联函数

1.1 概念

以inline修饰的函数叫做内联函数,编译时C++编译器会在调用内联函数的地方展开,没有函数调用建立栈帧的开销,内联函数提升程序运行的效率。

#include <iostream>
using namespace std;
int add(int a,int b)
{return a+b;
}
int main()
{int ret = 0;ret = add(10,20);return 0;
}

内联

如果在上述函数前加上inline关键字将其改为内联函数,在编译期间编译器会用函数体替换函数的调用。

#include <iostream>
using namespace std;
inline int add(int a,int b)
{return a+b;
}
int main()
{int ret = 0;ret = add(10,20);return 0;
}

1.2 内联的特性

  1. inline是一种以空间换时间的做法,如果编译器将会是将函数当成内联函数处理,在编译阶段会使用函数体替换调用,缺陷:可能会使目标文件变大,优势:少了调用开销,提高程序运行效率。
  2. inline对于编译器而言只是一个建议,不同的编译器关于inline实现机制可能不同,一般建议:将函数规模较小(即函数不是很长,具体没有准确的说法,取决于编译器内部实现)不是递归、且频繁调用的函数采用inline修饰,否则编译器会忽略inline特性。

一般来说,内联机制用于优化规模较小、流程直接、频繁调用的函数。很多编译器都不支持内联递归函数,而且一个75行的函数也不可能在调用内联地展开。

  1. inline不建议声明和定义分离,分离会导致链接错误。因为inline被展开,就没有函数地址了,链接就找不到了。
//test.h
#include <iostream>
using namespace std;inline void test(int x);
//test.c
#include "test.h"
void test(int x)
{//...
}
int main()
{test(1);return 0;
}
//链接错误

1.3 内联与宏

宏的优点:

  1. 增加代码的复用性
  2. 提高性能
    缺点:
  3. 不方便调试宏。
  4. 导致代码可读性差,可维护性差,容易误用。
  5. 没有类型安全的检查。
    内联就是C++用来替换宏工作的。具有宏的优点还修复了宏不能调试的缺点。

2. auto关键字(C++11)

2.1 类型别名思考

随着程序越来越复杂,程序中用到的类型也越来越复杂,经常体现在:

  1. 类型难以拼写。
  2. 含义不明确导致容易出错。
    可能你觉得也没啥啊,也就是几个字符而已,但是如果在使用STL库后变量的类型就会变得很长。
#include <string>
#include <unordered_map>
using namespace std;
int main()
{unordered_map<string,string> cnt = {{"apple","苹果"}};unordered_map<string,string>::iterator it = cnt.begin();//迭代器//...return 0;
}

unordered_map<string,string>::iterator还是比较长的。再没熟练前要敲出来还是容易敲错的。可能有人会想到利用typedef.

typedef unordered_map<string,string> u_map;
int main()
{u_map cnt = {{"apple","苹果"}};u_map::iterator it = cnt.begin();//迭代器//...return 0;
}

使用typedef给类型取别名确实可以简化代码,但是如果复杂的类型特别多,一个个写typedef也有点麻烦了。为了把表达式的值赋给变量,就需要在声明变量的时候清楚地知道表达式地类型,然而有时候确实做不到这点,因此C++11给auto赋予了新地意义。

2.2 auto介绍

在早期C/C++中的auto的含义是:使用auto修饰的变量,是具有自动存储器的局部变量,但遗憾的是一直没有人去使用它。
C++11中,标准委员会赋予了auto全新的含义:auto不再是一个存储类型的指示符,而是作为一个新的类型指示符来指示编译器,auto声明的变量必须由编译器再编译期间推导而得。

#include <string>
#include <iostream>
#include <unordered_map>
using namespace std;
int main()
{unordered_map<string,string> cnt = {{"apple","苹果"}};unordered_map<string,string>::iterator it = cnt.begin();//迭代器auto it2 = cnt.begin();int a = 0;auto b = a;auto c = 'c';cout<<typeid(b).name()<<endl;cout<<typeid(c).name()<<endl;//cout<<typeid(it2).name()<<endl;打印出来太长了//...return 0;
}
//打印结果:
/*
int
char
*/

注意:使用auto定义变量时,必须对其初始化,在编译阶段编译器要根据初始化表达式来推导auto得实际类型,因此auto并非是一种"类型"得声明,而是一个类型声明时得"占位符",编译器在编译时,会将auto替换位变量实际的类型。

2.3 auto的使用规则

  1. auto与指针和引用结合起来使用
    用auto声明指针类型时,用auto和auto*没有任何区别,但是auto声明引用类型时必须加&。
#include <iostream>
using namespace std;
int main()
{int x = 10;auto a = &x;auto* b = &x;auto& c = x;cout<<typeid(a).name()<<endl;cout<<typeid(b).name()<<endl;cout<<typeid(c).name()<<endl;*a = 20;*b = 30;c = 40;return 0;
}
//打印结果
/*
int *
int *
int
*/
  1. 在同一行定义多个变量
    当在同一行声明多个类型时,这些变量必须是相同的类型,否则编译器将会报错,因为编译器实际只对第一个类型进行推导,然后用推导出来的类型定义其他变量。
void testauto()
{auto a = 1,b = 2;auto c = 3,d = 4.0;//该行代码会编译失败,因为c和d的初始化表达式类型不同。
}

2.3 auto不能推导的场景

  1. auto不能作为函数的参数
void testauto(auto x)
{//...
}
//此处代码编译失败,auto不能作为形参类型,因为编译器无法对x的实际类型进行推导。
  1. auto不能直接用来声明数组
void testauto2()
{int a[] = {1,2,3};auto b[] = {1,2,3};//会报错//...
}
  1. 为了避免与C++98中的auto发生混淆,C++11只保留auto作为类型指示符的用法
  2. auto在实际中常见的优势用法就是跟以后会用到的范围for中使用。

3.基于范围的for循环(C++11)

3.1 范围for的语法

在C++98中如果要遍历一个数组,可以按照以下方式进行。

#include <iostream>
using namespace std;
int main()
{int arr[5] = {1,2,3,4,5};for(int i = 0;i<5;++i){arr[i] += 2;}for(int i = 0;i<5;++i){cout<<arr[i]<<' ';}return 0;
}

对于一个有范围的集合而言,由程序员来说明循环的范围是多余的,有时候还会犯错,因此C++11中引入的基于范围的for循环。
语法:

for(迭代的变量:迭代的范围)

演示:

#include <iostream>
using namespace std;
int main()
{int arr[5] = {1,2,3,4,5};for(int x:arr){cout<<x<<' ';}cout<<endl;for(int& x:arr){cout<<x<<' ';}cout<<endl;for(auto x:arr){cout<<x<<' ';}return 0;
}

注意:与普通循环类似,可以用continue和break。

3.2 范围for的使用条件

  1. for循环迭代的范围必须是确定的
    对于数组而言,就是数组中第一个元素和最后一个元素的范围;对于类而言,应该提供begin和end的用法,begin和end就是范围for循环迭代的范围。
  2. 迭代的对象要实现++和===的操作。(关于迭代器这个问题,在未来类和对象的文章中)

4. 指针空值nullptr

4.1 C++98中的指针空值

在良好的C/C++编程习惯中,声明一个变量时给该变量一个合适的初始值,否则可能会出现不可预料的错误,比如未初始化的指针。如果一个指针没有合法的指向,我们基本按照如下方式进行初始化。

void testprt()
{int* p1 = NULL;int* p2 = 0;//...
}

NULL其实就是个红宏,现在让我们转到定义看看。

#ifndef NULL#ifdef __cplusplus#define NULL 0#else#define NULL ((void *)0)#endif
#endif

可以看到,NULL可能被定义为字面常量0,或者被定义为无类型指针(void*)的常量。不论采用那种定义,在使用空值的指针,都不可避免的遇到一些问题:

void f(int x)
{cout<<"f(int)"<<endl;
}
void f(int* x)
{cout<<"f(int*)"<<endl;
}
int main()
{f(0);//进入f(int x)f(NULL);//进入f(int x)f((int*)NULL);//进入 f(int* x)return 0;
}

程序的本意是想通过f(NULL)调用指针版本的f(int*)函数,但是由于NULL被定义成0,因此与程序的初衷相悖。
在C++98中,字面常量0既可以是一个整型数字,也可以是无类型的指针(void*)常量,但是编译器默认情况下将其看成整型常量,如果要将其按照指针方式来使用,必须对其进行强转(void*)0.
注意:

  1. 在使用nullptr表示指针空值时,不需要包含头文件,因为nullptr是C++11作为关键字引入的。
  2. 在C++11中,sizeof(nullptr)与sizeof((void*)0)所占字符数相同。
  3. 为了提高代码的健壮性,在以后的C++学习中表示空值时建议使用nullptr

这篇关于解析C++内联函数与auto关键字的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1130897

相关文章

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

C++ 中的 if-constexpr语法和作用

《C++中的if-constexpr语法和作用》if-constexpr语法是C++17引入的新语法特性,也被称为常量if表达式或静态if(staticif),:本文主要介绍C++中的if-c... 目录1 if-constexpr 语法1.1 基本语法1.2 扩展说明1.2.1 条件表达式1.2.2 fa

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

C++中::SHCreateDirectoryEx函数使用方法

《C++中::SHCreateDirectoryEx函数使用方法》::SHCreateDirectoryEx用于创建多级目录,类似于mkdir-p命令,本文主要介绍了C++中::SHCreateDir... 目录1. 函数原型与依赖项2. 基本使用示例示例 1:创建单层目录示例 2:创建多级目录3. 关键注

C++从序列容器中删除元素的四种方法

《C++从序列容器中删除元素的四种方法》删除元素的方法在序列容器和关联容器之间是非常不同的,在序列容器中,vector和string是最常用的,但这里也会介绍deque和list以供全面了解,尽管在一... 目录一、简介二、移除给定位置的元素三、移除与某个值相等的元素3.1、序列容器vector、deque

C++常见容器获取头元素的方法大全

《C++常见容器获取头元素的方法大全》在C++编程中,容器是存储和管理数据集合的重要工具,不同的容器提供了不同的接口来访问和操作其中的元素,获取容器的头元素(即第一个元素)是常见的操作之一,本文将详细... 目录一、std::vector二、std::list三、std::deque四、std::forwa