关于Embedding的两种实现方式

2024-09-02 12:44
文章标签 实现 方式 两种 embedding

本文主要是介绍关于Embedding的两种实现方式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 言简意赅
  • 方式一
  • 方式二
  • 以DNN为例两种方式全部demo代码

言简意赅

假设现在有一段话:“我爱你中国”,在训练入模的时候,常用的方法分别有:onehot、embedding、hash,如果词表很大、特征很多,那么onehot之后会极其稀疏,hash也会有一定的hash冲突,所以这其中emb是最常用的方法。

我们希望,通过一个向量去表征每一个词,以“我爱你中国”为例,将其映射成为一个二维矩阵,矩阵的维度即(词表大小,emb维度)。

图片

对于结构化数据而言,假设我们现在有2个特征分别为“性别”、“设备品牌”,这里规范下概念方便代码实现,如下图:

一个类别特征对应一个Field,但是对应多个Feature:图片

所以按照上面的例子,field有两个,分别为“性别”、“设备品牌”,假设性别有男女2个,设备品牌有3个,它们则分别对应着feature,即特征值。按照emb的方式,我们需要对每一个feature都去学习一个向量表征。

下面方法均以此例为基础讲解

  • x1、x2分别代表“性别”、“设备品牌”,为特征域field
  • 经过编码后特征值分别为2个、3个,即0 1、0 1 2
  • batch_size = 3
  • emb_dim = 10

在这里插入图片描述

方式一

推荐使用方式二

思路:对于每一个特征field定义一个emb向量,然后进行拼接。

  • 1.定义每个特征field的词表大小,即有多少个特征值;
  • 2.为每一个特征field定义一个emb向量;
  • 3.拼接每个特征的emb向量。
'''   用于 spare field embedding   '''
def sparseFeature(feat, vocabulary_size, embed_dim):return {'spare': feat, 'vocabulary_size': vocabulary_size, 'embed_dim': embed_dim}# 每个特征field的词表大小,即有多少个特征值
spare_feature_columns = [sparseFeature(x, data[x].max() + 1, emb_dim) for x in ['x1', 'x2']]
print('spare_feature_columns: ', spare_feature_columns)# 为每一个特征field定义一个emb向量
embedding_layer = nn.ModuleDict({'embed_layer{}'.format(i): nn.Embedding(feat['vocabulary_size'], feat['embed_dim'])for i, feat in enumerate(spare_feature_columns)})
# 初始化权重
for i in range(len(spare_feature_columns)):torch.nn.init.xavier_uniform_(embedding_layer['embed_layer{}'.format(i)].weight.data)print('embedding_layer: ', embedding_layer)    tensor = tensor.long()  # 转成long类型才能作为nn.embedding的输入
# 拼接每个特征的emb向量
sparse_emb = torch.cat([embedding_layer['embed_layer{}'.format(i)](tensor[:, i])for i in range(tensor.shape[1])], dim=1)
print(sparse_emb.shape)
print(sparse_emb)
'''
spare_feature_columns:  [{'spare': 'x1', 'vocabulary_size': 2, 'embed_dim': 10}, {'spare': 'x2', 'vocabulary_size': 3, 'embed_dim': 10}]embedding_layer:  ModuleDict((embed_layer0): Embedding(2, 10)  (embed_layer1): Embedding(3, 10)
)torch.Size([3, 20])tensor([[ 0.4941,  0.3774, -0.5872, -0.5937,  0.6413, -0.6516,  0.6855, -0.2272,          0.3905, -0.5630, -0.0726,  0.6481,  0.0143,  0.0614,  0.0460, -0.2215,         -0.6515,  0.0103, -0.4000,  0.5353],       [ 0.4941,  0.3774, -0.5872, -0.5937,  0.6413, -0.6516,  0.6855, -0.2272,          0.3905, -0.5630,  0.5236,  0.3958, -0.1983,  0.4128, -0.0349, -0.5609,          0.4050, -0.4603,  0.3048, -0.6483],        [-0.2146, -0.4806,  0.2180,  0.3497,  0.1291, -0.4531, -0.6532,  0.2385,          0.3290, -0.7043,  0.1372, -0.1554,  0.0272, -0.4285, -0.2797, -0.0988,          0.2602,  0.6084,  0.0169,  0.0712]])
'''

方式二

这个是比较推荐的方式,并且经过实践这个方式比第一种方式效果还要好。

我们引入一个offset的概念,它的作用就是给每列特征的label加入之前特征的类别总和,来达到所有特征的label。以上述为例来理解下:

feature_fields = [2, 3],它代表“性别”、“设备品牌”各有几个特征值。

offsets = [0 2],它其实就代表着look up table。

即实际look up table中:

  • 0 - 1 行,对应特征性别,它的取值为0、1,所以dim为2,即feature_fields[0];
  • 2 - 4 行,对应特征设备品牌,它的取值为0、1、2,所以dim为3,即feature_fields[1];

但实际特征取值 forward(self, x) 的x大小 只在自身词表内取值:

  • 比如性别取值为1的时候,对应embedding内行数就是 offsets[性别] + 性别 = 0 + 1 = 1,也就是当x_性别取值为1的时候,对应emb的行数为1,注意是索引;
  • 再比如设备品牌取值为1的时候,对应embedding内行数就是 offsets[设备品牌] + 设备品牌 = 2 + 1 = 3;

所以offsets的作用其实就是找到每个特征值的emb向量。

所以思路为:获取每个特征的特征值,创建对应的offsets,再将两者相加,然后emb

  • 1.获取每个特征的特征值;
  • 2.定义offsets;
  • 3.创建emb。

在这里插入图片描述
在这里插入图片描述在这里插入图片描述

以DNN为例两种方式全部demo代码

https://wangguisen.blog.csdn.net/article/details/125928623

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

这篇关于关于Embedding的两种实现方式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1129989

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot中@Value注入静态变量方式

《SpringBoot中@Value注入静态变量方式》SpringBoot中静态变量无法直接用@Value注入,需通过setter方法,@Value(${})从属性文件获取值,@Value(#{})用... 目录项目场景解决方案注解说明1、@Value("${}")使用示例2、@Value("#{}"php

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函