关于Embedding的两种实现方式

2024-09-02 12:44
文章标签 实现 方式 两种 embedding

本文主要是介绍关于Embedding的两种实现方式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 言简意赅
  • 方式一
  • 方式二
  • 以DNN为例两种方式全部demo代码

言简意赅

假设现在有一段话:“我爱你中国”,在训练入模的时候,常用的方法分别有:onehot、embedding、hash,如果词表很大、特征很多,那么onehot之后会极其稀疏,hash也会有一定的hash冲突,所以这其中emb是最常用的方法。

我们希望,通过一个向量去表征每一个词,以“我爱你中国”为例,将其映射成为一个二维矩阵,矩阵的维度即(词表大小,emb维度)。

图片

对于结构化数据而言,假设我们现在有2个特征分别为“性别”、“设备品牌”,这里规范下概念方便代码实现,如下图:

一个类别特征对应一个Field,但是对应多个Feature:图片

所以按照上面的例子,field有两个,分别为“性别”、“设备品牌”,假设性别有男女2个,设备品牌有3个,它们则分别对应着feature,即特征值。按照emb的方式,我们需要对每一个feature都去学习一个向量表征。

下面方法均以此例为基础讲解

  • x1、x2分别代表“性别”、“设备品牌”,为特征域field
  • 经过编码后特征值分别为2个、3个,即0 1、0 1 2
  • batch_size = 3
  • emb_dim = 10

在这里插入图片描述

方式一

推荐使用方式二

思路:对于每一个特征field定义一个emb向量,然后进行拼接。

  • 1.定义每个特征field的词表大小,即有多少个特征值;
  • 2.为每一个特征field定义一个emb向量;
  • 3.拼接每个特征的emb向量。
'''   用于 spare field embedding   '''
def sparseFeature(feat, vocabulary_size, embed_dim):return {'spare': feat, 'vocabulary_size': vocabulary_size, 'embed_dim': embed_dim}# 每个特征field的词表大小,即有多少个特征值
spare_feature_columns = [sparseFeature(x, data[x].max() + 1, emb_dim) for x in ['x1', 'x2']]
print('spare_feature_columns: ', spare_feature_columns)# 为每一个特征field定义一个emb向量
embedding_layer = nn.ModuleDict({'embed_layer{}'.format(i): nn.Embedding(feat['vocabulary_size'], feat['embed_dim'])for i, feat in enumerate(spare_feature_columns)})
# 初始化权重
for i in range(len(spare_feature_columns)):torch.nn.init.xavier_uniform_(embedding_layer['embed_layer{}'.format(i)].weight.data)print('embedding_layer: ', embedding_layer)    tensor = tensor.long()  # 转成long类型才能作为nn.embedding的输入
# 拼接每个特征的emb向量
sparse_emb = torch.cat([embedding_layer['embed_layer{}'.format(i)](tensor[:, i])for i in range(tensor.shape[1])], dim=1)
print(sparse_emb.shape)
print(sparse_emb)
'''
spare_feature_columns:  [{'spare': 'x1', 'vocabulary_size': 2, 'embed_dim': 10}, {'spare': 'x2', 'vocabulary_size': 3, 'embed_dim': 10}]embedding_layer:  ModuleDict((embed_layer0): Embedding(2, 10)  (embed_layer1): Embedding(3, 10)
)torch.Size([3, 20])tensor([[ 0.4941,  0.3774, -0.5872, -0.5937,  0.6413, -0.6516,  0.6855, -0.2272,          0.3905, -0.5630, -0.0726,  0.6481,  0.0143,  0.0614,  0.0460, -0.2215,         -0.6515,  0.0103, -0.4000,  0.5353],       [ 0.4941,  0.3774, -0.5872, -0.5937,  0.6413, -0.6516,  0.6855, -0.2272,          0.3905, -0.5630,  0.5236,  0.3958, -0.1983,  0.4128, -0.0349, -0.5609,          0.4050, -0.4603,  0.3048, -0.6483],        [-0.2146, -0.4806,  0.2180,  0.3497,  0.1291, -0.4531, -0.6532,  0.2385,          0.3290, -0.7043,  0.1372, -0.1554,  0.0272, -0.4285, -0.2797, -0.0988,          0.2602,  0.6084,  0.0169,  0.0712]])
'''

方式二

这个是比较推荐的方式,并且经过实践这个方式比第一种方式效果还要好。

我们引入一个offset的概念,它的作用就是给每列特征的label加入之前特征的类别总和,来达到所有特征的label。以上述为例来理解下:

feature_fields = [2, 3],它代表“性别”、“设备品牌”各有几个特征值。

offsets = [0 2],它其实就代表着look up table。

即实际look up table中:

  • 0 - 1 行,对应特征性别,它的取值为0、1,所以dim为2,即feature_fields[0];
  • 2 - 4 行,对应特征设备品牌,它的取值为0、1、2,所以dim为3,即feature_fields[1];

但实际特征取值 forward(self, x) 的x大小 只在自身词表内取值:

  • 比如性别取值为1的时候,对应embedding内行数就是 offsets[性别] + 性别 = 0 + 1 = 1,也就是当x_性别取值为1的时候,对应emb的行数为1,注意是索引;
  • 再比如设备品牌取值为1的时候,对应embedding内行数就是 offsets[设备品牌] + 设备品牌 = 2 + 1 = 3;

所以offsets的作用其实就是找到每个特征值的emb向量。

所以思路为:获取每个特征的特征值,创建对应的offsets,再将两者相加,然后emb

  • 1.获取每个特征的特征值;
  • 2.定义offsets;
  • 3.创建emb。

在这里插入图片描述
在这里插入图片描述在这里插入图片描述

以DNN为例两种方式全部demo代码

https://wangguisen.blog.csdn.net/article/details/125928623

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

这篇关于关于Embedding的两种实现方式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1129989

相关文章

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

Mybatis官方生成器的使用方式

《Mybatis官方生成器的使用方式》本文详细介绍了MyBatisGenerator(MBG)的使用方法,通过实际代码示例展示了如何配置Maven插件来自动化生成MyBatis项目所需的实体类、Map... 目录1. MyBATis Generator 简介2. MyBatis Generator 的功能3

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的