如何扛住100亿次请求?后端架构应该这样设计!

2024-09-02 10:38

本文主要是介绍如何扛住100亿次请求?后端架构应该这样设计!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方“朱小厮的博客”,选择“设为星标

回复”1024“获取独家整理的学习资料


640



1. 前言 前几天,偶然看到了 《扛住100亿次请求——如何做一个“有把握”的春晚红包系统”》一文,看完以后,感慨良多,收益很多。正所谓他山之石,可以攻玉,虽然此文发表于2015年,我看到时已经过去良久,但是其中的思想仍然是可以为很多后端设计借鉴。 同时作为一微信后端工程师,看完以后又会思考,学习了这样的文章以后,是否能给自己的工作带来一些实际的经验呢?所谓纸上得来终觉浅,绝知此事要躬行,能否自己实践一下100亿次红包请求呢?否则读完以后脑子里能剩下的东西 不过就是100亿 1400万QPS整流 这样的字眼,剩下的文章将展示作者是如何以此过程为目标,在本地环境的模拟了此过程。 实现的目标:单机支持100万连接,模拟了摇红包和发红包过程,单机峰值QPS 6万,平稳支持了业务。 注:本文以及作者所有内容,仅代表个人理解和实践,过程和微信团队没有任何关系,真正的线上系统也不同,只是从一些技术点进行了实践,请读者进行区分。


2. 背景知识
  • QPS:Queries per second 每秒的请求数目
  • PPS:Packets per second 每秒数据包数目
  • 摇红包:客户端发出一个摇红包的请求,如果系统有红包就会返回,用户获得红包
  • 发红包:产生一个红包里面含有一定金额,红包指定数个用户,每个用户会收到红包信息,用户可以发送拆红包的请求,获取其中的部分金额。



3. 确定目标 在一切系统开始以前,我们应该搞清楚我们的系统在完成以后,应该有一个什么样的负载能力。 3.1 用户总数 通过文章我们可以了解到接入服务器638台,服务上限大概是14.3亿用户, 所以单机负载的用户上限大概是14.3亿/638台=228万用户/台。但是目前中国肯定不会有14亿用户同时在线,参考 http://qiye.qianzhan.com/show/detail/160818-b8d1c700.html的说法,2016年Q2 微信用户大概是8亿,月活在5.4 亿左右。所以在2015年春节期间,虽然使用的用户会很多,但是同时在线肯定不到5.4亿。 3.2. 服务器数量 一共有638台服务器,按照正常运维设计,我相信所有服务器不会完全上线,会有一定的硬件冗余,来防止突发硬件故障。假设一共有600台接入服务器。 3.3 单机需要支持的负载数 每台服务器支持的用户数:5.4亿/600 = 90万。也就是平均单机支持90万用户。如果真实情况比90万更多,则模拟的情况可能会有偏差,但是我认为QPS在这个实验中更重要。 3.4. 单机峰值QPS 文章中明确表示为1400万QPS.这个数值是非常高的,但是因为有600台服务器存在,所以机的QPS为 1400万/600= 约为2.3万QPS, 文章曾经提及系统可以支持4000万QPS,那么系统的QPS 至少要到4000万/600 = 约为 6.6万, 这个数值大约是目前的3倍,短期来看并不会被触及。但是我相信应该做过相应的压力测试。 3.5. 发放红包 文中提到系统以5万个每秒的下发速度,那么单机每秒下发速度50000/600 =83个/秒,也就是单机系统应该保证每秒以83个的速度下发即可。 最后考虑到系统的真实性,还至少有用户登录的动作,拿红包这样的业务。真实的系统还会包括聊天这样的服务业务。 最后整体的看一下 100亿次摇红包这个需求,假设它是均匀地发生在春节联欢晚会的4个小时里,那么服务器的QPS 应该是10000000000/600/3600/4.0=1157. 也就是单机每秒1000多次,这个数值其实并不高。如果完全由峰值速度1400万消化 10000000000/(1400*10000) = 714秒,也就是说只需要峰值坚持11分钟,就可以完成所有的请求。可见互联网产品的一个特点就是峰值非常高,持续时间并不会很长。


总结 从单台服务器看,它需要满足下面一些条件:
  1. 支持至少100万连接用户
  2. 每秒至少能处理2.3万的QPS,这里我们把目标定得更高一些 分别设定到了3万和6万。
  3. 摇红包:支持每秒83个的速度下发放红包,也就是说每秒有2.3万次摇红包的请求,其中83个请求能摇到红包,其余的2.29万次请求会知道自己没摇到。当然客户端在收到红包以后,也需要确保客户端和服务器两边的红包数目和红包内的金额要一致。因为没有支付模块,所以我们也把要求提高一倍,达到200个红包每秒的分发速度
  4. 支持用户之间发红包业务,确保收发两边的红包数目和红包内金额要一致。同样也设定200个红包每秒的分发速度为我们的目标。


想完整模拟整个系统实在太难了,首先需要海量的服务器,其次需要上亿的模拟客户端。这对我来说是办不到,但是有一点可以确定,整个系统是可以水平扩展的,所以我们可以模拟100万客户端,在模拟一台服务器 那么就完成了1/600的模拟。 和现有系统区别:和大部分高QPS测试的不同,本系统的侧重点有所不同。我对2者做了一些对比。 640?wx_fmt=png


4. 基础软件和硬件


4.1软件 Golang 1.8r3 , shell, python (开发没有使用c++ 而是使用了golang, 是因为使用golang 的最初原型达到了系统要求。虽然golang 还存在一定的问题,但是和开发效率比,这点损失可以接受) 服务器操作系统:Ubuntu 12.04 客户端操作系统:debian 5.0


4.2硬件环境 服务端:dell R2950。8核物理机,非独占有其他业务在工作,16G内存。这台硬件大概是7年前的产品,性能应该不是很高要求。 服务器硬件版本:


640?wx_fmt=png 服务器CPU信息: 640?wx_fmt=png 客户端:esxi 5.0 虚拟机,配置为4核 5G内存。一共17台,每台和服务器建立6万个连接。完成100万客户端模拟


5. 技术分析和实现 5.1) 单机实现100万用户连接 这一点来说相对简单,笔者在几年前就早完成了单机百万用户的开发以及操作。现代的服务器都可以支持百万用户。相关内容可以查看: github代码以及相关文档: https://github.com/xiaojiaqi/C1000kPracticeGuide 
系统配置以及优化文档: 
https://github.com/xiaojiaqi/C1000kPracticeGuide/tree/master/docs/cn  5.2) 3万QPS 这个问题需要分2个部分来看客户端方面和服务器方面。
  • 客户端QPS

因为有100万连接连在服务器上,QPS为3万。这就意味着每个连接每33秒,就需要向服务器发一个摇红包的请求。因为单IP可以建立的连接数为6万左右, 有17台服务器同时模拟客户端行为。我们要做的就保证在每一秒都有这么多的请求发往服务器即可。 其中技术要点就是客户端协同。但是各个客户端的启动时间,建立连接的时间都不一致,还存在网络断开重连这样的情况,各个客户端如何判断何时自己需要发送请求,各自该发送多少请求呢? 我是这样解决的:利用NTP服务,同步所有的服务器时间,客户端利用时间戳来判断自己的此时需要发送多少请求。
算法很容易实现:假设有100万用户,则用户id 为0-999999.要求的QPS为5万, 客户端得知QPS为5万,总用户数为100万,它计算 100万/5万=20,所有的用户应该分为20组,如果 time() % 20 == 用户id % 20,那么这个id的用户就该在这一秒发出请求,如此实现了多客户端协同工作。每个客户端只需要知道 总用户数和QPS 就能自行准确发出请求了。 (扩展思考:如果QPS是3万 这样不能被整除的数目,该如何办?如何保证每台客户端发出的请求数目尽量的均衡呢?)


  • 服务器QPS


服务器端的QPS相对简单,它只需要处理客户端的请求即可。但是为了客观了解处理情况,我们还需要做2件事情。


  • 第一:需要记录每秒处理的请求数目,这需要在代码里埋入计数器。
  • 第二:我们需要监控网络,因为网络的吞吐情况,可以客观的反映出QPS的真实数据。为此,我利用python脚本 结合ethtool 工具编写了一个简单的工具,通过它我们可以直观的监视到网络的数据包通过情况如何。它可以客观的显示出我们的网络有如此多的数据传输在发生。


工具截图:  640?wx_fmt=png


5.3) 摇红包业务 摇红包的业务非常简单,首先服务器按照一定的速度生产红包。红包没有被取走的话,就堆积在里面。服务器接收一个客户端的请求,如果服务器里现在有红包就会告诉客户端有,否则就提示没有红包。 因为单机每秒有3万的请求,所以大部分的请求会失败。只需要处理好锁的问题即可。
我为了减少竞争,将所有的用户分在了不同的桶里。这样可以减少对锁的竞争。如果以后还有更高的性能要求,还可以使用 高性能队列——Disruptor来进一步提高性能。 注意,在我的测试环境里是缺少支付这个核心服务的,所以实现的难度是大大的减轻了。另外提供一组数字:2016年淘宝的双11的交易峰值仅仅为12万/秒,微信红包分发速度是5万/秒,要做到这点是非常困难的。(http://mt.sohu.com/20161111/n472951708.shtml)


5.4) 发红包业务 发红包的业务很简单,系统随机产生一些红包,并且随机选择一些用户,系统向这些用户提示有红包。这些用户只需要发出拆红包的请求,系统就可以随机从红包中拆分出部分金额,分给用户,完成这个业务。同样这里也没有支付这个核心服务。


5.5)监控 最后 我们需要一套监控系统来了解系统的状况,我借用了我另一个项目(https://github.com/xiaojiaqi/fakewechat) 里的部分代码完成了这个监控模块,利用这个监控,服务器和客户端会把当前的计数器内容发往监控,监控需要把各个客户端的数据做一个整合和展示。同时还会把日志记录下来,给以后的分析提供原始数据。线上系统更多使用opentsdb这样的时序数据库,这里资源有限,所以用了一个原始的方案。 监控显示日志大概这样: 640?wx_fmt=png



6. 代码实现及分析 在代码方面,使用到的技巧实在不多,主要是设计思想和golang本身的一些问题需要考虑。 首先golang的goroutine 的数目控制,因为至少有100万以上的连接,所以按照普通的设计方案,至少需要200万或者300万的goroutine在工作。这会造成系统本身的负担很重。 其次就是100万个连接的管理,无论是连接还是业务都会造成一些心智的负担。 我的设计是这样的: 首先将100万连接分成多个不同的SET,每个SET是一个独立,平行的对象。每个SET 只管理几千个连接,如果单个SET 工作正常,我只需要添加SET就能提高系统处理能力。 其次谨慎的设计了每个SET里数据结构的大小,保证每个SET的压力不会太大,不会出现消息的堆积。 再次减少了gcroutine的数目,每个连接只使用一个goroutine,发送消息在一个SET里只有一个gcroutine负责,这样节省了100万个goroutine。这样整个系统只需要保留 100万零几百个gcroutine就能完成业务。大量的节省了cpu 和内存 系统的工作流程大概是:每个客户端连接成功后,系统会分配一个goroutine读取客户端的消息,当消息读取完成,将它转化为消息对象放至在SET的接收消息队列,然后返回获取下一个消息。 在SET内部,有一个工作goroutine,它只做非常简单而高效的事情,它做的事情如下,检查SET的接受消息,它会收到3类消息


  1. 客户端的摇红包请求消息
  2. 客户端的其他消息 比如聊天 好友这一类
  3. 服务器端对客户端消息的回应


对于第1种消息客户端的摇红包请求消息 是这样处理的,从客户端拿到摇红包请求消息,试图从SET的红包队列里 获取一个红包,如果拿到了就把红包信息 返回给客户端,否则构造一个没有摇到的消息,返回给对应的客户端。
对于第2种消息客户端的其他消息 比如聊天 好友这一类,只需简单地从队列里拿走消息,转发给后端的聊天服务队列即可,其他服务会把消息转发出去。
对于第3种消息服务器端对客户端消息的回应。SET 只需要根据消息里的用户id,找到SET里保留的用户连接对象,发回去就可以了。 对于红包产生服务,它的工作很简单,只需要按照顺序在轮流在每个SET的红包产生对列里放至红包对象就可以了。这样可以保证每个SET里都是公平的,其次它的工作强度很低,可以保证业务稳定。
见代码: https://github.com/xiaojiaqi/10billionhongbaos


7. 实践 实践的过程分为3个阶段 阶段1 分别启动服务器端和监控端,然后逐一启动17台客户端,让它们建立起100万的链接。在服务器端,利用ss 命令 统计出每个客户端和服务器建立了多少连接。 命令如下:
 
 Alias ss2=Ss –ant | grep 1025 | grep EST | awk –F: “{print \$8}” | sort | uniq –c’
结果如下:  640?wx_fmt=png


阶段2 利用客户端的http接口,将所有的客户端QPS 调整到3万,让客户端发出3W QPS强度的请求。 运行如下命令: 640?wx_fmt=png 观察网络监控和监控端反馈,发现QPS 达到预期数据,网络监控截图: 640?wx_fmt=png 在服务器端启动一个产生红包的服务,这个服务会以200个每秒的速度下发红包,总共4万个。此时观察客户端在监控上的日志,会发现基本上以200个每秒的速度获取到红包。 640?wx_fmt=png 等到所有红包下发完成后,再启动一个发红包的服务,这个服务系统会生成2万个红包,每秒也是200个,每个红包随机指定3位用户,并向这3个用户发出消息,客户端会自动来拿红包,最后所有的红包都被拿走。 640?wx_fmt=png



阶段3 利用客户端的http接口,将所有的客户端QPS 调整到6万,让客户端发出6W QPS强度的请求。 640?wx_fmt=png 如法炮制,在服务器端,启动一个产生红包的服务,这个服务会以200个每秒的速度下发红包。总共4万个。此时观察客户端在监控上的日志,会发现基本上以200个每秒的速度获取到红包。 等到所有红包下发完成后,再启动一个发红包的服务,这个服务系统会生成2万个红包,每秒也是200个,每个红包随机指定3位用户,并向这3个用户发出消息,客户端会自动来拿红包,最后所有的红包都被拿走。 最后,实践完成。
8. 分析数据 在实践过程中,服务器和客户端都将自己内部的计数器记录发往监控端,成为了日志。我们利用简单python 脚本和gnuplt 绘图工具,将实践的过程可视化,由此来验证运行过程。 第一张是客户端的QPS发送数据: 640?wx_fmt=png
这张图的横坐标是时间,单位是秒,纵坐标是QPS,表示这时刻所有客户端发送的请求的QPS。 图的第一区间,几个小的峰值,是100万客户端建立连接的, 图的第二区间是3万QPS 区间,我们可以看到数据 比较稳定的保持在3万这个区间。最后是6万QPS区间。但是从整张图可以看到QPS不是完美地保持在我们希望的直线上。这主要是以下几个原因造成的


  1. 当非常多goroutine 同时运行的时候,依靠sleep 定时并不准确,发生了偏移。我觉得这是golang本身调度导致的。当然如果cpu比较强劲,这个现象会消失。
  2. 因为网络的影响,客户端在发起连接时,可能发生延迟,导致在前1秒没有完成连接。
  3. 服务器负载较大时,1000M网络已经出现了丢包现象,可以通过ifconfig 命令观察到这个现象,所以会有QPS的波动。


第二张是 服务器处理的QPS图: 640?wx_fmt=png 和客户端的向对应的,服务器也存在3个区间,和客户端的情况很接近。但是我们看到了在大概22:57分,系统的处理能力就有一个明显的下降,随后又提高的尖状。这说明代码还需要优化。 整体观察在3万QPS区间,服务器的QPS比较稳定,在6万QSP时候,服务器的处理就不稳定了。我相信这和我的代码有关,如果继续优化的话,还应该能有更好的效果。 将2张图合并起来 : 640?wx_fmt=png 基本是吻合的,这也证明系统是符合预期设计的。 这是红包生成数量的状态变化图: 640?wx_fmt=png 非常的稳定。 这是客户端每秒获取的摇红包状态: 640?wx_fmt=png 可以发现3万QPS区间,客户端每秒获取的红包数基本在200左右,在6万QPS的时候,以及出现剧烈的抖动,不能保证在200这个数值了。我觉得主要是6万QPS时候,网络的抖动加剧了,造成了红包数目也在抖动。 最后是golang 自带的pprof 信息,其中有gc 时间超过了10ms, 考虑到这是一个7年前的硬件,而且非独占模式,所以还是可以接受。 640?wx_fmt=png



总结 按照设计目标,我们模拟和设计了一个支持100万用户,并且每秒至少可以支持3万QPS,最多6万QPS的系统,简单模拟了微信的摇红包和发红包的过程。可以说达到了预期的目的。 如果600台主机每台主机可以支持6万QPS,只需要7分钟就可以完成 100亿次摇红包请求。 虽然这个原型简单地完成了预设的业务,但是它和真正的服务会有哪些差别呢?我罗列了一下


640?wx_fmt=png Refers: 


  • 单机百万的实践
  • https://github.com/xiaojiaqi/C1000kPracticeGuide
  • 如何在AWS上进行100万用户压力测试
  • https://github.com/xiaojiaqi/fakewechat/wiki/Stress-Testing-in-the-Cloud
  • 构建一个你自己的类微信系统
  • https://github.com/xiaojiaqi/fakewechat/wiki/Design
  • http://djt.qq.com/article/view/1356
  • http://techblog.cloudperf.net/2016/05/2-million-packets-per-second-on-public.html
  • http://datacratic.com/site/blog/1m-qps-nginx-and-ubuntu-1204-ec2
  • @火丁笔记
  • http://huoding.com/2013/10/30/296
  • https://gobyexample.com/non-blocking-channel-operations

项目地址:https://github.com/xiaojiaqi/

10billionhongbaos

权申明:内容来源网络,版权归原创者所有。除非无法确认,我们都会标明作者及出处,如有侵权烦请告知,我们会立即删除并表示歉意。谢谢。


想知道更多?描下面的二维码关注我

640?wx_fmt=png

相关推荐:

  • 《科普 | 明星公司之Netflix》

  • 《看我如何作死 | 将CPU、IO打爆》

  • 《看我如何作死 | 网络延迟、丢包、中断一个都没落下》

  • 《7102-2019年技术文全套整理,建议收藏》

  • 《看我如何假死!》

  • 《总结缓存使用过程中的几种策略以及优缺点组合分析》


加技术群入口(备注:技术):>>>Learn More<<

免费资料入口(备注:1024):>>>Learn More<<

免费星球入口:>>>Free<<<

 
点个"在看"呗^_^

这篇关于如何扛住100亿次请求?后端架构应该这样设计!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1129733

相关文章

mybatis的整体架构

mybatis的整体架构分为三层: 1.基础支持层 该层包括:数据源模块、事务管理模块、缓存模块、Binding模块、反射模块、类型转换模块、日志模块、资源加载模块、解析器模块 2.核心处理层 该层包括:配置解析、参数映射、SQL解析、SQL执行、结果集映射、插件 3.接口层 该层包括:SqlSession 基础支持层 该层保护mybatis的基础模块,它们为核心处理层提供了良好的支撑。

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

百度/小米/滴滴/京东,中台架构比较

小米中台建设实践 01 小米的三大中台建设:业务+数据+技术 业务中台--从业务说起 在中台建设中,需要规范化的服务接口、一致整合化的数据、容器化的技术组件以及弹性的基础设施。并结合业务情况,判定是否真的需要中台。 小米参考了业界优秀的案例包括移动中台、数据中台、业务中台、技术中台等,再结合其业务发展历程及业务现状,整理了中台架构的核心方法论,一是企业如何共享服务,二是如何为业务提供便利。

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监

怎么让1台电脑共享给7人同时流畅设计

在当今的创意设计与数字内容生产领域,图形工作站以其强大的计算能力、专业的图形处理能力和稳定的系统性能,成为了众多设计师、动画师、视频编辑师等创意工作者的必备工具。 设计团队面临资源有限,比如只有一台高性能电脑时,如何高效地让七人同时流畅地进行设计工作,便成为了一个亟待解决的问题。 一、硬件升级与配置 1.高性能处理器(CPU):选择多核、高线程的处理器,例如Intel的至强系列或AMD的Ry

cross-plateform 跨平台应用程序-03-如果只选择一个框架,应该选择哪一个?

跨平台系列 cross-plateform 跨平台应用程序-01-概览 cross-plateform 跨平台应用程序-02-有哪些主流技术栈? cross-plateform 跨平台应用程序-03-如果只选择一个框架,应该选择哪一个? cross-plateform 跨平台应用程序-04-React Native 介绍 cross-plateform 跨平台应用程序-05-Flutte

基于51单片机的自动转向修复系统的设计与实现

文章目录 前言资料获取设计介绍功能介绍设计清单具体实现截图参考文献设计获取 前言 💗博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,一名热衷于单片机技术探索与分享的博主、专注于 精通51/STM32/MSP430/AVR等单片机设计 主要对象是咱们电子相关专业的大学生,希望您们都共创辉煌!✌💗 👇🏻 精彩专栏 推荐订阅👇🏻 单片机

系统架构设计师: 信息安全技术

简简单单 Online zuozuo: 简简单单 Online zuozuo 简简单单 Online zuozuo 简简单单 Online zuozuo 简简单单 Online zuozuo :本心、输入输出、结果 简简单单 Online zuozuo : 文章目录 系统架构设计师: 信息安全技术前言信息安全的基本要素:信息安全的范围:安全措施的目标:访问控制技术要素:访问控制包括:等保

SprinBoot+Vue网络商城海鲜市场的设计与实现

目录 1 项目介绍2 项目截图3 核心代码3.1 Controller3.2 Service3.3 Dao3.4 application.yml3.5 SpringbootApplication3.5 Vue 4 数据库表设计5 文档参考6 计算机毕设选题推荐7 源码获取 1 项目介绍 博主个人介绍:CSDN认证博客专家,CSDN平台Java领域优质创作者,全网30w+

利用命令模式构建高效的手游后端架构

在现代手游开发中,后端架构的设计对于支持高并发、快速迭代和复杂游戏逻辑至关重要。命令模式作为一种行为设计模式,可以有效地解耦请求的发起者与接收者,提升系统的可维护性和扩展性。本文将深入探讨如何利用命令模式构建一个强大且灵活的手游后端架构。 1. 命令模式的概念与优势 命令模式通过将请求封装为对象,使得请求的发起者和接收者之间的耦合度降低。这种模式的主要优势包括: 解耦请求发起者与处理者