小白也能懂的DPDK技术解析

2024-09-02 08:58
文章标签 技术 解析 小白 dpdk

本文主要是介绍小白也能懂的DPDK技术解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方“朱小厮的博客”,选择“设为星标”

后台回复"书",获取

后台回复“k8s”,可领取k8s资料

一、网络IO的处境和趋势

从我们用户的使用就可以感受到网速一直在提升,而网络技术的发展也从1GE/10GE/25GE/40GE/100GE的演变,从中可以得出单机的网络IO能力必须跟上时代的发展。

1. 传统的电信领域

IP层及以下,例如路由器、交换机、防火墙、基站等设备都是采用硬件解决方案。基于专用网络处理器(NP),有基于FPGA,更有基于ASIC的。但是基于硬件的劣势非常明显,发生Bug不易修复,不易调试维护,并且网络技术一直在发展,例如2G/3G/4G/5G等移动技术的革新,这些属于业务的逻辑基于硬件实现太痛苦,不能快速迭代。传统领域面临的挑战是急需一套软件架构的高性能网络IO开发框架。

2. 云的发展

私有云的出现通过网络功能虚拟化(NFV)共享硬件成为趋势,NFV的定义是通过标准的服务器、标准交换机实现各种传统的或新的网络功能。急需一套基于常用系统和标准服务器的高性能网络IO开发框架。

3. 单机性能的飙升

网卡从1G到100G的发展,CPU从单核到多核到多CPU的发展,服务器的单机能力通过横行扩展达到新的高点。但是软件开发却无法跟上节奏,单机处理能力没能和硬件门当户对,如何开发出与时并进高吞吐量的服务,单机百万千万并发能力。

即使有业务对QPS要求不高,主要是CPU密集型,但是现在大数据分析、人工智能等应用都需要在分布式服务器之间传输大量数据完成作业。这点应该是我们互联网后台开发最应关注,也最关联的。

二、Linux + X86网络IO瓶颈

在数年前曾经写过《网卡工作原理及高并发下的调优》一文,描述了Linux的收发报文流程。根据经验,在C1(8核)上跑应用每1W包处理需要消耗1%软中断CPU,这意味着单机的上限是100万PPS(Packet Per Second)。

从TGW(Netfilter版)的性能100万PPS,AliLVS优化了也只到150万PPS,并且他们使用的服务器的配置还是比较好的。假设,我们要跑满10GE网卡,每个包64字节,这就需要2000万PPS(注:以太网万兆网卡速度上限是1488万PPS,因为最小帧大小为84B《Bandwidth, Packets Per Second, and Other Network Performance Metrics》),100G是2亿PPS,即每个包的处理耗时不能超过50纳秒。

而一次Cache Miss,不管是TLB、数据Cache、指令Cache发生Miss,回内存读取大约65纳秒,NUMA体系下跨Node通讯大约40纳秒。所以,即使不加上业务逻辑,即使纯收发包都如此艰难。我们要控制Cache的命中率,我们要了解计算机体系结构,不能发生跨Node通讯。

从这些数据,我希望可以直接感受一下这里的挑战有多大,理想和现实,我们需要从中平衡。问题都有这些

  • 1.传统的收发报文方式都必须采用硬中断来做通讯,每次硬中断大约消耗100微秒,这还不算因为终止上下文所带来的Cache Miss。

  • 2.数据必须从内核态用户态之间切换拷贝带来大量CPU消耗,全局锁竞争。

  • 3.收发包都有系统调用的开销。

  • 4.内核工作在多核上,为可全局一致,即使采用Lock Free,也避免不了锁总线、内存屏障带来的性能损耗。

  • 5.从网卡到业务进程,经过的路径太长,有些其实未必要的,例如netfilter框架,这些都带来一定的消耗,而且容易Cache Miss。

三、DPDK的基本原理

从前面的分析可以得知IO实现的方式、内核的瓶颈,以及数据流过内核存在不可控因素,这些都是在内核中实现,内核是导致瓶颈的原因所在,要解决问题需要绕过内核。所以主流解决方案都是旁路网卡IO,绕过内核直接在用户态收发包来解决内核的瓶颈。

Linux社区也提供了旁路机制Netmap,官方数据10G网卡1400万PPS,但是Netmap没广泛使用。其原因有几个:

1.Netmap需要驱动的支持,即需要网卡厂商认可这个方案。

2.Netmap仍然依赖中断通知机制,没完全解决瓶颈。

3.Netmap更像是几个系统调用,实现用户态直接收发包,功能太过原始,没形成依赖的网络开发框架,社区不完善。

那么,我们来看看发展了十几年的DPDK,从Intel主导开发,到华为、思科、AWS等大厂商的加入,核心玩家都在该圈子里,拥有完善的社区,生态形成闭环。

早期,主要是传统电信领域3层以下的应用,如华为、中国电信、中国移动都是其早期使用者,交换机、路由器、网关是主要应用场景。但是,随着上层业务的需求以及DPDK的完善,在更高的应用也在逐步出现。DPDK旁路原理:

左边是原来的方式数据从 网卡 -> 驱动 -> 协议栈 -> Socket接口 -> 业务。

右边是DPDK的方式,基于UIO(Userspace I/O)旁路数据。数据从 网卡 -> DPDK轮询模式-> DPDK基础库 -> 业务

用户态的好处是易用开发和维护,灵活性好。并且Crash也不影响内核运行,鲁棒性强。

DPDK支持的CPU体系架构:x86、ARM、PowerPC(PPC)

DPDK支持的网卡列表:https://core.dpdk.org/supported/,我们主流使用Intel 82599(光口)、Intel x540(电口)

四、DPDK的基石UIO

为了让驱动运行在用户态,Linux提供UIO机制。使用UIO可以通过read感知中断,通过mmap实现和网卡的通讯,要开发用户态驱动有几个步骤:

UIO原理:

  • 1.开发运行在内核的UIO模块,因为硬中断只能在内核处理

  • 2.通过/dev/uioX读取中断

  • 3.通过mmap和外设共享内存

五、DPDK核心优化:PMD

DPDK的UIO驱动屏蔽了硬件发出中断,然后在用户态采用主动轮询的方式,这种模式被称为PMD(Poll Mode Driver)。

UIO旁路了内核,主动轮询去掉硬中断,DPDK从而可以在用户态做收发包处理。带来Zero Copy、无系统调用的好处,同步处理减少上下文切换带来的Cache Miss。

运行在PMD的Core会处于用户态CPU100%的状态。

网络空闲时CPU长期空转,会带来能耗问题。所以,DPDK推出Interrupt DPDK模式。

Interrupt DPDK:

它的原理和NAPI很像,就是没包可处理时进入睡眠,改为中断通知。并且可以和其他进程共享同个CPU Core,但是DPDK进程会有更高调度优先级。

六、DPDK的高性能代码实现

1. 采用HugePage减少TLB Miss

默认下Linux采用4KB为一页,页越小内存越大,页表的开销越大,页表的内存占用也越大。CPU有TLB(Translation Lookaside Buffer)成本高所以一般就只能存放几百到上千个页表项。如果进程要使用64G内存,则64G/4KB=16000000(一千六百万)页,每页在页表项中占用16000000 * 4B=62MB。如果用HugePage采用2MB作为一页,只需64G/2MB=2000,数量不在同个级别。

而DPDK采用HugePage,在x86-64下支持2MB、1GB的页大小,几何级的降低了页表项的大小,从而减少TLB-Miss。并提供了内存池(Mempool)、MBuf、无锁环(Ring)、Bitmap等基础库。根据我们的实践,在数据平面(Data Plane)频繁的内存分配释放,必须使用内存池,不能直接使用rte_malloc,DPDK的内存分配实现非常简陋,不如ptmalloc。

2. SNA(Shared-nothing Architecture)

软件架构去中心化,尽量避免全局共享,带来全局竞争,失去横向扩展的能力。NUMA体系下不跨Node远程使用内存。

3. SIMD(Single Instruction Multiple Data)

从最早的mmx/sse到最新的avx2,SIMD的能力一直在增强。DPDK采用批量同时处理多个包,再用向量编程,一个周期内对所有包进行处理。比如,memcpy就使用SIMD来提高速度。

SIMD在游戏后台比较常见,但是其他业务如果有类似批量处理的场景,要提高性能,也可看看能否满足。

4. 不使用慢速API

这里需要重新定义一下慢速API,比如说gettimeofday,虽然在64位下通过vDSO已经不需要陷入内核态,只是一个纯内存访问,每秒也能达到几千万的级别。但是,不要忘记了我们在10GE下,每秒的处理能力就要达到几千万。所以即使是gettimeofday也属于慢速API。DPDK提供Cycles接口,例如rte_get_tsc_cycles接口,基于HPET或TSC实现。

在x86-64下使用RDTSC指令,直接从寄存器读取,需要输入2个参数,比较常见的实现:

这么写逻辑没错,但是还不够极致,还涉及到2次位运算才能得到结果,我们看看DPDK是怎么实现:

巧妙的利用C的union共享内存,直接赋值,减少了不必要的运算。但是使用tsc有些问题需要面对和解决

  • 1) CPU亲和性,解决多核跳动不精确的问题

  • 2) 内存屏障,解决乱序执行不精确的问题

  • 3) 禁止降频和禁止Intel Turbo Boost,固定CPU频率,解决频率变化带来的失准问题

5. 编译执行优化

1) 分支预测

现代CPU通过pipeline、superscalar提高并行处理能力,为了进一步发挥并行能力会做分支预测,提升CPU的并行能力。遇到分支时判断可能进入哪个分支,提前处理该分支的代码,预先做指令读取编码读取寄存器等,预测失败则预处理全部丢弃。我们开发业务有时候会非常清楚这个分支是true还是false,那就可以通过人工干预生成更紧凑的代码提示CPU分支预测成功率。

2) CPU Cache预取

Cache Miss的代价非常高,回内存读需要65纳秒,可以将即将访问的数据主动推送的CPU Cache进行优化。比较典型的场景是链表的遍历,链表的下一节点都是随机内存地址,所以CPU肯定是无法自动预加载的。但是我们在处理本节点时,可以通过CPU指令将下一个节点推送到Cache里。

…等等

3) 内存对齐

内存对齐有2个好处:

l 避免结构体成员跨Cache Line,需2次读取才能合并到寄存器中,降低性能。结构体成员需从大到小排序和以及强制对齐。

l 多线程场景下写产生False sharing,造成Cache Miss,结构体按Cache Line对齐。

4) 常量优化

常量相关的运算的编译阶段完成。比如C++11引入了constexp,比如可以使用GCC的__builtin_constant_p来判断值是否常量,然后对常量进行编译时得出结果。举例网络序主机序转换

其中rte_constant_bswap32的实现

5)使用CPU指令

现代CPU提供很多指令可直接完成常见功能,比如大小端转换,x86有bswap指令直接支持了。

对实现的追求不一样,所以造轮子前一定要先了解好轮子。

Google开源的cpu_features可以获取当前CPU支持什么特性,从而对特定CPU进行执行优化。高性能编程永无止境,对硬件、内核、编译器、开发语言的理解要深入且与时俱进。

七、DPDK生态

对我们互联网后台开发来说DPDK框架本身提供的能力还是比较裸的,比如要使用DPDK就必须实现ARP、IP层这些基础功能,有一定上手难度。如果要更高层的业务使用,还需要用户态的传输协议支持。不建议直接使用DPDK。

目前生态完善,社区强大(一线大厂支持)的应用层开发项目是FD.io(The Fast Data Project),有思科开源支持的VPP,比较完善的协议支持,ARP、VLAN、Multipath、IPv4/v6、MPLS等。用户态传输协议UDP/TCP有TLDK。从项目定位到社区支持力度算比较靠谱的框架。

来源:悦码

想知道更多?描下面的二维码关注我

后台回复"技术",加入技术群

后台回复“k8s”,可领取k8s资料

【精彩推荐】

  • 原创|OpenAPI标准规范

  • 中台不是万能药,关于中台的思考和尝试

  • ClickHouse到底是什么?为什么如此牛逼!

  • 原来ElasticSearch还可以这么理解

  • 面试官:InnoDB中一棵B+树可以存放多少行数据?

  • 微服务下如何解耦?对于已经紧耦合下如何重构?

  • 如何构建一套高性能、高可用、低成本的视频处理系统?

  • 架构之道:分离业务逻辑和技术细节

  • 星巴克不使用两阶段提交

点个赞+在看,少个 bug ????

这篇关于小白也能懂的DPDK技术解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1129542

相关文章

Java图片压缩三种高效压缩方案详细解析

《Java图片压缩三种高效压缩方案详细解析》图片压缩通常涉及减少图片的尺寸缩放、调整图片的质量(针对JPEG、PNG等)、使用特定的算法来减少图片的数据量等,:本文主要介绍Java图片压缩三种高效... 目录一、基于OpenCV的智能尺寸压缩技术亮点:适用场景:二、JPEG质量参数压缩关键技术:压缩效果对比

关于WebSocket协议状态码解析

《关于WebSocket协议状态码解析》:本文主要介绍关于WebSocket协议状态码的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录WebSocket协议状态码解析1. 引言2. WebSocket协议状态码概述3. WebSocket协议状态码详解3

CSS Padding 和 Margin 区别全解析

《CSSPadding和Margin区别全解析》CSS中的padding和margin是两个非常基础且重要的属性,它们用于控制元素周围的空白区域,本文将详细介绍padding和... 目录css Padding 和 Margin 全解析1. Padding: 内边距2. Margin: 外边距3. Padd

Oracle数据库常见字段类型大全以及超详细解析

《Oracle数据库常见字段类型大全以及超详细解析》在Oracle数据库中查询特定表的字段个数通常需要使用SQL语句来完成,:本文主要介绍Oracle数据库常见字段类型大全以及超详细解析,文中通过... 目录前言一、字符类型(Character)1、CHAR:定长字符数据类型2、VARCHAR2:变长字符数

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Springboot @Autowired和@Resource的区别解析

《Springboot@Autowired和@Resource的区别解析》@Resource是JDK提供的注解,只是Spring在实现上提供了这个注解的功能支持,本文给大家介绍Springboot@... 目录【一】定义【1】@Autowired【2】@Resource【二】区别【1】包含的属性不同【2】@

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4