人生苦短我用Python excel转csv

2024-09-02 07:44

本文主要是介绍人生苦短我用Python excel转csv,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

人生苦短我用Python excel转csv

  • 前言
  • 准备工作
  • pandas库
  • 主要类和方法
    • ExcelFile 类
    • DataFrame 类
    • read_excel 函数
    • to_csv 函数
  • 示例

前言

Excel 文件和csv文件都是常用的电子表格文件格式,其中csv格式更便于用于数据交换和处理。本文使用pandas库将Excel文件转化为csv文件。

准备工作

pip install pandas
pip install openpyxl

pandas库

  • csv库是Python标准库的一部分,提供了基本的csv文件读写功能。它不能直接支持读取 Excel 文件。

  • 要读取 Excel 文件,通常需要使用 pandas 库。以下是来自官网的介绍:

pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool,
built on top of the Python programming language.

  • 在读取不同文件格式所需要的engine
  • openpyxl 是一个用于读写 Excel 2010 xlsx/xlsm/xltx/xltm 文件的Python库。支持通过 Python 代码创建、修改和读取 Excel 文件,而无需依赖于 Microsoft Excel 应用程序。
"""
engine : {{'openpyxl', 'calamine', 'odf', 'pyxlsb', 'xlrd'}}, default NoneIf io is not a buffer or path, this must be set to identify io.Engine compatibility :- ``openpyxl`` supports newer Excel file formats.- ``calamine`` supports Excel (.xls, .xlsx, .xlsm, .xlsb)and OpenDocument (.ods) file formats.- ``odf`` supports OpenDocument file formats (.odf, .ods, .odt).- ``pyxlsb`` supports Binary Excel files.- ``xlrd`` supports old-style Excel files (.xls).When ``engine=None``, the following logic will be used to determine the engine:- If ``path_or_buffer`` is an OpenDocument format (.odf, .ods, .odt),then `odf <https://pypi.org/project/odfpy/>`_ will be used.- Otherwise if ``path_or_buffer`` is an xls format, ``xlrd`` will be used.- Otherwise if ``path_or_buffer`` is in xlsb format, ``pyxlsb`` will be used.- Otherwise ``openpyxl`` will be used.
"""

主要类和方法

  • pandas库中ExcelFile 类主要用于读取Excel文件, DataFrame 类用于表示和操作数据。

ExcelFile 类

  • ExcelFile 类用于处理 Excel 文件,封装了解析和读取Excel文件的操作。
  • 支持查看 Excel 文件中的工作表名称,并读取特定的工作表。
  • 支持读取 Excel 文件中的多个工作表,并将每个工作表转换为一个 DataFrame 对象。
class ExcelFile:def __init__(self,path_or_buffer,engine: str | None = None,storage_options: StorageOptions | None = None,engine_kwargs: dict | None = None,) -> None:@propertydef sheet_names(self):return self._reader.sheet_names

DataFrame 类

  • DataFrame 类用于表示二维的、大小可变、潜在异构的表格数据。
  • 可以包含多种数据类型的列,如整数、浮点数、字符串等。
  • 可以进行各种数据操作,如选择、过滤、修改、合并、分组、排序等。

read_excel 函数

  • pandasread_excel 函数,用于从 Excel 文件中读取数据并将其转换为 DataFrame 对象。
  • 支持多种参数来处理不同的 Excel 文件格式和内容。
def read_excel(io,sheet_name: str | int | list[IntStrT] | None = 0,*,header: int | Sequence[int] | None = 0,names: SequenceNotStr[Hashable] | range | None = None,index_col: int | str | Sequence[int] | None = None,usecols: int| str| Sequence[int]| Sequence[str]| Callable[[str], bool]| None = None,dtype: DtypeArg | None = None,engine: Literal["xlrd", "openpyxl", "odf", "pyxlsb", "calamine"] | None = None,converters: dict[str, Callable] | dict[int, Callable] | None = None,true_values: Iterable[Hashable] | None = None,false_values: Iterable[Hashable] | None = None,skiprows: Sequence[int] | int | Callable[[int], object] | None = None,nrows: int | None = None,na_values=None,keep_default_na: bool = True,na_filter: bool = True,verbose: bool = False,parse_dates: list | dict | bool = False,date_parser: Callable | lib.NoDefault = lib.no_default,date_format: dict[Hashable, str] | str | None = None,thousands: str | None = None,decimal: str = ".",comment: str | None = None,skipfooter: int = 0,storage_options: StorageOptions | None = None,dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,engine_kwargs: dict | None = None,
) -> DataFrame | dict[IntStrT, DataFrame]:
  • 常用参数
参数说明默认值
ioExcel 文件的路径或文件对象
sheet_name要读取的工作表名称或索引。
可以是字符串(工作表名称)、整数(工作表索引)、列表(多个工作表)或 None(所有工作表)
默认为 0(第一个工作表)
header指定哪一行作为列名默认为 0(第一行)
index_col指定哪一列作为行索引。可以是整数或列名
usecols指定要读取的列。可以是列索引、列名或列范围。
dtype指定列的数据类型。可以是字典,键为列名,值为数据类型。
skiprows跳过文件开头的一些行。可以是整数或列表。
nrows要读取的行数。

to_csv 函数

  • DataFrame 对象提供了一个非常方便的方法 to_csv,用于将 DataFrame 中的数据写入 CSV 文件。
    def to_csv(self,path_or_buf: FilePath | WriteBuffer[bytes] | WriteBuffer[str] | None = None,sep: str = ",",na_rep: str = "",float_format: str | Callable | None = None,columns: Sequence[Hashable] | None = None,header: bool_t | list[str] = True,index: bool_t = True,index_label: IndexLabel | None = None,mode: str = "w",encoding: str | None = None,compression: CompressionOptions = "infer",quoting: int | None = None,quotechar: str = '"',lineterminator: str | None = None,chunksize: int | None = None,date_format: str | None = None,doublequote: bool_t = True,escapechar: str | None = None,decimal: str = ".",errors: OpenFileErrors = "strict",storage_options: StorageOptions | None = None,) -> str | None:
  • 常用参数
参数说明默认值
path_or_buf输出文件的路径或文件对象。
如果为 None,则返回 CSV 字符串。
None
sep分隔符默认为逗号 ,
index是否写入行索引默认为 True
header是否写入列名默认为 True
columns指定要写入的列默认为所有列
encoding指定编码格式默认为 utf-8

示例

实现很简单:

  • 使用 pandas 库读取 Excel 文件;
  • 读取工作表并将其转换为 DataFrame 对象;
  • DataFrame 写入 csv 文件。
import osimport pandas as pddef export_csv(input_file, output_path):# 创建ExcelFile对象with pd.ExcelFile(input_file) as xls:# 获取工作表名称列表for i, sheet_name in enumerate(xls.sheet_names):# 读取工作表并转换为DataFramedf = pd.read_excel(xls, sheet_name=sheet_name)output_file = os.path.join(output_path, f'{i + 1}-{sheet_name}.csv')# 将DataFrame中的数据写入CSV文件。df.to_csv(output_file, index=False)

这篇关于人生苦短我用Python excel转csv的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1129396

相关文章

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t

Python中局部变量和全局变量举例详解

《Python中局部变量和全局变量举例详解》:本文主要介绍如何通过一个简单的Python代码示例来解释命名空间和作用域的概念,它详细说明了内置名称、全局名称、局部名称以及它们之间的查找顺序,文中通... 目录引入例子拆解源码运行结果如下图代码解析 python3命名空间和作用域命名空间命名空间查找顺序命名空

Python如何将大TXT文件分割成4KB小文件

《Python如何将大TXT文件分割成4KB小文件》处理大文本文件是程序员经常遇到的挑战,特别是当我们需要把一个几百MB甚至几个GB的TXT文件分割成小块时,下面我们来聊聊如何用Python自动完成这... 目录为什么需要分割TXT文件基础版:按行分割进阶版:精确控制文件大小完美解决方案:支持UTF-8编码

基于Python打造一个全能文本处理工具

《基于Python打造一个全能文本处理工具》:本文主要介绍一个基于Python+Tkinter开发的全功能本地化文本处理工具,它不仅具备基础的格式转换功能,更集成了中文特色处理等实用功能,有需要的... 目录1. 概述:当文本处理遇上python图形界面2. 功能全景图:六大核心模块解析3.运行效果4. 相

Python中的魔术方法__new__详解

《Python中的魔术方法__new__详解》:本文主要介绍Python中的魔术方法__new__的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、核心意义与机制1.1 构造过程原理1.2 与 __init__ 对比二、核心功能解析2.1 核心能力2.2

Python虚拟环境终极(含PyCharm的使用教程)

《Python虚拟环境终极(含PyCharm的使用教程)》:本文主要介绍Python虚拟环境终极(含PyCharm的使用教程),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录一、为什么需要虚拟环境?二、虚拟环境创建方式对比三、命令行创建虚拟环境(venv)3.1 基础命令3

Python Transformer 库安装配置及使用方法

《PythonTransformer库安装配置及使用方法》HuggingFaceTransformers是自然语言处理(NLP)领域最流行的开源库之一,支持基于Transformer架构的预训练模... 目录python 中的 Transformer 库及使用方法一、库的概述二、安装与配置三、基础使用:Pi

Python 中的 with open文件操作的最佳实践

《Python中的withopen文件操作的最佳实践》在Python中,withopen()提供了一个简洁而安全的方式来处理文件操作,它不仅能确保文件在操作完成后自动关闭,还能处理文件操作中的异... 目录什么是 with open()?为什么使用 with open()?使用 with open() 进行

关于pandas的read_csv方法使用解读

《关于pandas的read_csv方法使用解读》:本文主要介绍关于pandas的read_csv方法使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录pandas的read_csv方法解读read_csv中的参数基本参数通用解析参数空值处理相关参数时间处理相关

Python中使用正则表达式精准匹配IP地址的案例

《Python中使用正则表达式精准匹配IP地址的案例》Python的正则表达式(re模块)是完成这个任务的利器,但你知道怎么写才能准确匹配各种合法的IP地址吗,今天我们就来详细探讨这个问题,感兴趣的朋... 目录为什么需要IP正则表达式?IP地址的基本结构基础正则表达式写法精确匹配0-255的数字验证IP地