Linux内核API wait_for_completion_timeout

2024-09-02 05:58

本文主要是介绍Linux内核API wait_for_completion_timeout,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

概述

wait_for_completion_timeout函数功能描述:此函数用于阻塞当前进程,等待其他进程的执行结束,被等待进程保存在输入参数的wait字段所代表的等待队列中。有两种情况可以结束此种等待:第一,当等待队列中的进程被函数complete( )或函数complete_all( )唤醒,等待结束,阻塞进程将继续执行;第二,当等待的时钟节拍超时时,被阻塞的进程会继续执行。

此函数将当前进程设置为不可中断的等待状态,所以即使通过Ctrl+C组合键也不能强制结束等待;此函数设置的等待时间是函数的第二个参数所代表的系统时钟节拍数,这个时间是可以更改的。

文章目录

  • 1 wait_for_completion_timeout文件包含
  • 2 wait_for_completion_timeout函数定义
    • 2.1 wait_for_completion_timeout输入参数说明
    • 2.2 wait_for_completion_timeout返回参数说明
  • 3 wait_for_completion_timeout实例解析

wait_for_completion_timeout文件包含

#include <linux/completion.h>

C

wait_for_completion_timeout函数定义

在内核源码中的位置:linux-3.19.3/kernel/sched/completion.c

函数定义格式:

unsigned long __sched wait_for_completion_timeout(struct completion*x, unsigned long timeout)

wait_for_completion_timeout输入参数说明

此函数的第一个输入参数是struct completion结构体类型的指针,包含一个等待队列信息及等待队列的状态信息,等待队列的状态代表此等待队列是否被唤醒过,其定义及详细解释参考函数complete( )分析文档的输入参数说明部分。

此函数的第二个输入参数是unsigned long型的变量,代表等待的时钟节拍数,当等待的时钟节拍数超过此值时,被阻塞的进程将继续执行。

wait_for_completion_timeout返回参数说明

此函数的返回结果是unsigned long型的变量,代表剩余的系统时钟节拍数,即传入的第二个参数所代表的时钟节拍数与等待进程结束消耗的时钟节拍之差。如果等待是正常结束,则返回值的范围在0到函数的第二个输入参数值之间。

wait_for_completion_timeout实例解析

编写测试文件:wait_for_completion_timeout.c

头文件引用及全局变量定义:

/*头文件引用*/
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/pid.h>
#include <linux/wait.h>
#include <linux/completion.h>
#include <linux/kthread.h>
MODULE_LICENSE("GPL");/*全局变量定义*/
static struct completion comple;         //用于保存completion的状态
static struct task_struct * old_thread; //保存初始化进程信息

子进程处理函数定义:

int my_function(void * argc)
{wait_queue_head_t head;wait_queue_t data;printk("in the kernel thread function! \n");init_waitqueue_head(&head);                     //初始化等待队列头元素init_waitqueue_entry(&data, current);           //用当前进程初始化等待队列元素add_wait_queue(&head, &data);                   //将当前进程插入到等待队列中schedule_timeout_uninterruptible(10);           //将等待队列置于不可中断的等待状态printk("the current pid is:%d\n", current->pid);     //显示当前进程的PID值printk("the state of the real_parent is :%ld\n", old_thread->state);//显示父进程的状态//complete(&comple);                            //调用函数唤醒进程,并更改done字段的值printk("out the kernel thread function\n");return 0;
}

模块加载函数定义:

static int __init wait_for_completion_timeout_init(void)
{struct task_struct * result;long leavetime;wait_queue_t data;printk("into wait_for_completion_timeout_init.\n");old_thread = current;result=kthread_create_on_node(my_function, NULL, -1, "wait_for_completion_timeout");// 创建新进程wake_up_process(result);init_completion(&comple);             //初始化completion变量init_waitqueue_entry(&data, result); //用新进程初始化等待队列元素__add_wait_queue_tail(&(comple.wait), &data);         //将新进程加入等待队列的尾部leavetime=wait_for_completion_timeout(&comple,100); //阻塞进程,等待新进程的结束/*显示函数wait_for_completion_timeout( )的返回结果*/printk("the result of the wait_for_completion_timeout is:%ld\n", leavetime);/*显示函数kernel_thread( )函数的返回结果*/printk("the pid of new thread is :%d\n", result->pid);printk("the current pid is:%d\n", current->pid);      //显示当前进程的PID值printk("out wait_for_completion_timeout_init.\n");return 0;
}

模块退出函数定义:

static void __exit wait_for_completion_timeout_exit(void)
{printk("Goodbye wait_for_completion_timeout\n");
}

模块加载、退出函数调用:

module_init(wait_for_completion_timeout_init);
module_exit(wait_for_completion_timeout_exit);

实例运行结果及分析:

首先编译模块,执行命令insmod wait_for_completion_timeout.ko插入内核模块,此时终端会出现短暂的停顿,因为进程阻塞所至,当终端恢复命令行模式时,输入命令dmesg -c会出现如图A所示的结果。

Linux内核API wait_for_completion_timeout

去掉子进程处理函数中对语句“complete(&comple); ”的注释,保存文件,重新编译、加载模块,此时不会出现终端短暂的停顿的现象,输入命令dmesg -c,会出现如图B所示的结果。

Linux内核API wait_for_completion_timeout

结果分析:

从图A和图B可以看出在子进程执行时父进程的状态值都是2,即父进程处于不可中断的等待状态,并且子进程都在父进程之前执行完毕,父进程会等待子进程的执行完毕。

A中显示函数wait_for_completion_timeout( )的返回结果是0,可以推测此等待是正常结束的,实际情况是因等待超时而程序正常运行结束的。

B中显示函数wait_for_completion_timeout( )的返回结果是90,可以推测等待是正常结束的,实际情况是通过调用函数complete( )唤醒等待队列中的进程,使等待提前结束,返回结果90是等待剩余的时钟节拍数,所消耗的时钟节拍数是10。

说明
对于子进程处理函数中调用函数schedule_timeout_uninterruptible( )使子进程进入短暂的睡眠,是为了保证父进程中的函数wait_for_completion( )能够在子进程中显示父进程状态之前被执行,从而能看到函数wait_for_completion( )对当前进程的作用。

进程状态说明:

对于进程能够处于的状态,在函数__wake_up( )的进程状态说明部分有详细的说明。

这篇关于Linux内核API wait_for_completion_timeout的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1129188

相关文章

linux-基础知识3

打包和压缩 zip 安装zip软件包 yum -y install zip unzip 压缩打包命令: zip -q -r -d -u 压缩包文件名 目录和文件名列表 -q:不显示命令执行过程-r:递归处理,打包各级子目录和文件-u:把文件增加/替换到压缩包中-d:从压缩包中删除指定的文件 解压:unzip 压缩包名 打包文件 把压缩包从服务器下载到本地 把压缩包上传到服务器(zip

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

内核启动时减少log的方式

内核引导选项 内核引导选项大体上可以分为两类:一类与设备无关、另一类与设备有关。与设备有关的引导选项多如牛毛,需要你自己阅读内核中的相应驱动程序源码以获取其能够接受的引导选项。比如,如果你想知道可以向 AHA1542 SCSI 驱动程序传递哪些引导选项,那么就查看 drivers/scsi/aha1542.c 文件,一般在前面 100 行注释里就可以找到所接受的引导选项说明。大多数选项是通过"_

Linux_kernel驱动开发11

一、改回nfs方式挂载根文件系统         在产品将要上线之前,需要制作不同类型格式的根文件系统         在产品研发阶段,我们还是需要使用nfs的方式挂载根文件系统         优点:可以直接在上位机中修改文件系统内容,延长EMMC的寿命         【1】重启上位机nfs服务         sudo service nfs-kernel-server resta

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念

Linux服务器Java启动脚本

Linux服务器Java启动脚本 1、初版2、优化版本3、常用脚本仓库 本文章介绍了如何在Linux服务器上执行Java并启动jar包, 通常我们会使用nohup直接启动,但是还是需要手动停止然后再次启动, 那如何更优雅的在服务器上启动jar包呢,让我们一起探讨一下吧。 1、初版 第一个版本是常用的做法,直接使用nohup后台启动jar包, 并将日志输出到当前文件夹n

[Linux]:进程(下)

✨✨ 欢迎大家来到贝蒂大讲堂✨✨ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 所属专栏:Linux学习 贝蒂的主页:Betty’s blog 1. 进程终止 1.1 进程退出的场景 进程退出只有以下三种情况: 代码运行完毕,结果正确。代码运行完毕,结果不正确。代码异常终止(进程崩溃)。 1.2 进程退出码 在编程中,我们通常认为main函数是代码的入口,但实际上它只是用户级

【Linux】应用层http协议

一、HTTP协议 1.1 简要介绍一下HTTP        我们在网络的应用层中可以自己定义协议,但是,已经有大佬定义了一些现成的,非常好用的应用层协议,供我们直接使用,HTTP(超文本传输协议)就是其中之一。        在互联网世界中,HTTP(超文本传输协议)是一个至关重要的协议,他定义了客户端(如浏览器)与服务器之间如何进行通信,以交换或者传输超文本(比如HTML文档)。