【LoRa】CAD的工作原理以及使用

2024-09-01 06:44
文章标签 使用 工作 lora 原理 cad

本文主要是介绍【LoRa】CAD的工作原理以及使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1 CAD介绍
    • 1.1 CAD工作原理
    • 1.2 与CAD有关的中断
  • 2 CAD的使用
    • 2.1 CAD总耗时
    • 2.2 CAD均衡配置
    • 2.3 最优配置速查表
  • 3 CAD的应用
    • 3.1 CAD项目使用
    • 3.2 CAD扩展应用CSMA
  • 4 参考文献

1 CAD介绍

本章介绍一下LoRa芯片的CAD功能、原理以及如何使用。由于第一代SX127x的CAD使用与以后的芯片有所不同,本章介绍不适用SX127x。首先,我将datasheet中对CAD的介绍贴图在这里,如下图。
CAD介绍
其意思我大致解释一下。

  1. 从LoRa芯片第二代以后,即SX1261/SX1262/1268/LLCC68/SX1280/SX1281/LR1110/LR1120/LR1121,CAD不仅可以检测LoRa preamble,还可以检测LoRa packet,而以前老的芯片SX1272/SX1276/SX1278只能检测LoRa preamble。
  2. 在CAD模式,radio芯片将会扫描LoRa信号,扫描时间是在代码中定义的N个symbol1 时间。在此时间段内,如果检测到LoRa信号,将会产生CAD Detected IRQ中断。
  3. 可选择配置的symbol个数为1、2、4、8、16,这个参数的选择与SF和BW2 有关。

1.1 CAD工作原理

CAD执行过程是扫描空中信号,然后按照配置的SF和BW进行信号解析,将相关的信号峰值与噪声相比:如果比值超过peak-to-noise ratio (PNR) 的门限,CAD将认为有LoRa信号存在。
注意此处所说的PNR是指cadDetPeak值,这是代码中需要设置的一个参数。

1.2 与CAD有关的中断

与CAD相关的中断有两个:CadDone和CadDetected。打开CAD,不管有没有扫描到LoRa信号,一定会产生CadDone中断。但若检测到LoRa信号,则会同时产生CadDetected中断。下图是datasheet中的解释。
CAD中断
在代码中,CadDone和CadDetected中断的处理过程是嵌套的,示例代码如下:

if( ( irq_regs & SYSTEM_IRQ_CAD_DONE ) == SYSTEM_IRQ_CAD_DONE )
{HAL_DBG_TRACE_INFO( "CAD done\n" );if( ( irq_regs & SYSTEM_IRQ_CAD_DETECTED ) == SYSTEM_IRQ_CAD_DETECTED ){HAL_DBG_TRACE_INFO( "Channel activity detected\n" );on_cad_done_detected( );}else{HAL_DBG_TRACE_INFO( "No channel activity detected\n" );on_cad_done_undetected( );}
}

2 CAD的使用

CAD执行过程是在没有MCU干预下完成的,可分为两个步骤:

  • Reception:开始CAD,在使用者设定的symbol时间窗口内扫描。
  • Correlation:这个是处理过程,会占用少于1个symbol的时间。这个过程会决定有没有CadDetected中断产生。

2.1 CAD总耗时

由上可知,CAD总的耗时包括CAD开窗时间和CAD处理时间,下图为具体耗时计算公式,并举例说明。
CAD耗时

2.2 CAD均衡配置

影响CAD功能的参数主要有两个:Window Duration和Peak-to-Noise Threshold(cadDetMin默认设置为10,不建议更改)。

  • Window Duration:这个参数可以通过symbol number来配置,它决定了CAD开窗时间,增大可以增加CAD的可靠性,但增大时长也意味着增加功耗。另外,改变symbol number时,只要SF和BW不变,不用重调cadDetPeak的值。如下图增加symbol个数后所产生的影响。
    CAD开窗时间
  • Peak-to-Noise Threshold:指cadDetPeak值,这个参数决定了CAD判断LoRa信号的灵敏性,cadDetPeak值过小会造成false detect,过大会丢包,如下图测试结果,所以这个值也是需要综合考虑选取的。
    cadDetPeak

2.3 最优配置速查表

为了可以快速的配置合适的参数,Semtech做了一些实验验证,总结得出一些表格,这样大家在使用时可以快速查表使用。表格非包含全部情况,如果没有要使用的参数,也可以根据现有参数推断出一个合理的值。
下图为使用SX128x的CAD配置,推荐使用4 symbols,cadDetMin等于10不用改动,表中提供了当使用不同SF和BW时,选择cadDetPeak的值。
SX128x CAD配置表
下边两张表格为SX126x使用BW125KHz时,最优配置。
SX126x CAD 表1
SX126x CAD表2
下边两张表格为SX126x使用BW500KHz时,最优配置。
SX126x CAD表3
SX126x CAD表4

3 CAD的应用

3.1 CAD项目使用

在此直接举个例子说明一下在项目中如何使用CAD功能,CAD一般应用在低功耗唤醒的逻辑中。
现有一个节点,配置参数为SF=7,BW=125KHz,cadSymbolNum=2,每休眠2s执行一次CAD监听。
根据公式Tsymbol = 2SF / BW, 计算单个symbol的时间为1.024ms。
根据公式CAD Duration[s] = (cadSymbolNum + (2*SF + 3) / 32) * Tsymbol,计算CAD开窗时间是2.592ms。
发送端需要配置的preamble长度所耗时间要大于接收端sleep周期+2倍的CAD开窗时间: Tpreamble > (2s + 2 * 2.592ms) = 2005.184ms
则我们需要设定发送端preamble长度为 Npreamble=2000,Tpreamble=( Npreamble + 4.5) * Tsymbol = (2000 + 4.5) * 1.024ms = 2052.608ms > 2005.184ms,以此来保证每次都可以将接收端从sleep模式唤醒。
在此我解释一下上边计算Tpreamble时,为什么要加4.5个symbol。由下图物理层规定可知,preamble还包含sync word和frequency sync两部分,所以要加4.5个symbol。
LoRa的preamble结构

3.2 CAD扩展应用CSMA

CSMA(Carrier Sense)是一种无线通信技术,注意此技术不是radio自带功能,而是纯应用层使用逻辑,其作用是无线发射机在发包之前先侦听无线环境,检测信道是否空闲,是否有其他信号干扰。提到信道检测,大家可能会想到使用读取信号RSSI(Receive Signal Strength Indication)技术来做,但对于LoRa而言,也是LoRa与FSK技术的主要不同点之一,LoRa信号允许在环境噪声水平以下传输,而使用RSSI技术检测不到环境噪声以下的信号,但CAD技术可以读取radio灵敏度3dB范围内的LoRa信号。也就是说即使LoRa信号在环境噪声以下,也可以被检测到。
由此,我们可以把CAD+RSSI两种技术组合使用,起名为CSMA。其运行机制是在进行CAD的时间内,此时radio为RX状态,同时使用寄存器读取当前信道RSSI值。然后,根据这两种功能的读取结果去判断当前信号是否有其他信号干扰。当然,在实际应用中,需要过滤RSSI的值,因为RSSI是瞬时能量值,波动较大,需要读很多次,然后掐头去尾求取平均值使用比较稳妥。下图为在使用CSMA系统时的一些介绍。
CSMA

4 参考文献

关于CAD功能,在此推荐一些参考文档,这些文档都是来自Semtech官网的Application Note,想了解更多CAD的可免费下载阅览。
AN1200-77-SX1280_CAD-V1_0.pdf
SX126X CAD performance evaluation V2.1.pdf
AN1200.21 SX127x Reading channel RSSI during a CAD.pdf
关于SX127x的低功耗设计的文章中也有讲到CAD的使用,文档为AN1200.17_LoraLowEnergyDesign_STD.pdf


  1. 单个symbol的计算公式是Tsymbol = 2SF / BW,单位秒。 ↩︎

  2. BW,bandwidth,带宽。 ↩︎

这篇关于【LoRa】CAD的工作原理以及使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126231

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的