java-spark广播变量

2024-08-31 15:58
文章标签 java 广播 变量 spark

本文主要是介绍java-spark广播变量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 1. java spark使用广播变量方式
    • 2. 运行时spark任务报错
      • 1. 原因
      • 2. 解决方案

1. java spark使用广播变量方式

在java spark中如果想要使用广播变量需要使用JavaSparkContext.broadcast()方法
代码如下

SparkSession sparkSession = SparkSession.builder().config(sparkConf).getOrCreate();JavaSparkContext javaSparkContext = JavaSparkContext.fromSparkContext(sparkSession.sparkContext());Dataset<Row> labelDimensionTable = sparkSession.read().parquet(labelDimPath);Map<String, Long> labelNameToId = getNameToId(labelDimensionTable);Broadcast<Map<String, Long>> labelNameIdBroadcast = javaSparkContext.broadcast(labelNameToId);Map<String, Long> getNameToId(Dataset<Row> labelDimTable) {return  labelDimTable.javaRDD().mapToPair(new PairFunction() {@Overridepublic Tuple2 call(Object object) throws Exception {Row curRow = (Row) object;Long labelId = curRow.getAs("label_id");String labelTitle = curRow.getAs("label_title");return Tuple2.apply(labelTitle, labelId);}}).collectAsMap();}

2. 运行时spark任务报错


20/09/09 18:23:00 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 5.0 (TID 4008, node-hadoop67.com, executor 3, partition 0, RACK_LOCAL, 8608 bytes)
20/09/09 18:23:00 INFO storage.BlockManagerInfo: Added broadcast_9_piece0 in memory on node-hadoop67.com:23191 (size: 41.1 KB, free: 2.5 GB)
20/09/09 18:23:01 INFO storage.BlockManagerInfo: Added broadcast_8_piece0 in memory on node-hadoop67.com:23191 (size: 33.5 KB, free: 2.5 GB)
20/09/09 18:23:02 INFO storage.BlockManagerInfo: Added broadcast_5_piece1 in memory on node-hadoop67.com:23191 (size: 698.1 KB, free: 2.5 GB)
20/09/09 18:23:02 INFO storage.BlockManagerInfo: Added broadcast_5_piece0 in memory on node-hadoop67.com:23191 (size: 4.0 MB, free: 2.5 GB)
20/09/09 18:23:02 WARN scheduler.TaskSetManager: Lost task 0.0 in stage 5.0 (TID 4008, node-hadoop67.com, executor 3): java.io.IOException: java.lang.UnsupportedOperationExceptionat org.apache.spark.util.Utils$.tryOrIOException(Utils.scala:1367)at org.apache.spark.broadcast.TorrentBroadcast.readBroadcastBlock(TorrentBroadcast.scala:207)at org.apache.spark.broadcast.TorrentBroadcast._value$lzycompute(TorrentBroadcast.scala:66)at org.apache.spark.broadcast.TorrentBroadcast._value(TorrentBroadcast.scala:66)at org.apache.spark.broadcast.TorrentBroadcast.getValue(TorrentBroadcast.scala:96)at com.kk.search.user_profile.task.user_profile.UserLabelProfile$1.call(UserLabelProfile.java:157)at org.apache.spark.sql.Dataset$$anonfun$44.apply(Dataset.scala:2605)at org.apache.spark.sql.Dataset$$anonfun$44.apply(Dataset.scala:2605)at org.apache.spark.sql.execution.MapPartitionsExec$$anonfun$5.apply(objects.scala:188)at org.apache.spark.sql.execution.MapPartitionsExec$$anonfun$5.apply(objects.scala:185)at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:836)at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:836)at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:49)at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:49)at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:49)at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:49)at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)at org.apache.spark.scheduler.Task.run(Task.scala:109)at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:381)at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.UnsupportedOperationExceptionat java.util.AbstractMap.put(AbstractMap.java:209)at com.esotericsoftware.kryo.serializers.MapSerializer.read(MapSerializer.java:162)at com.esotericsoftware.kryo.serializers.MapSerializer.read(MapSerializer.java:39)at com.esotericsoftware.kryo.Kryo.readClassAndObject(Kryo.java:790)at org.apache.spark.serializer.KryoDeserializationStream.readObject(KryoSerializer.scala:278)at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$8.apply(TorrentBroadcast.scala:308)at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1394)at org.apache.spark.broadcast.TorrentBroadcast$.unBlockifyObject(TorrentBroadcast.scala:309)at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$readBroadcastBlock$1$$anonfun$apply$2.apply(TorrentBroadcast.scala:235)at scala.Option.getOrElse(Option.scala:121)at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$readBroadcastBlock$1.apply(TorrentBroadcast.scala:211)at org.apache.spark.util.Utils$.tryOrIOException(Utils.scala:1360)... 29 more20/09/09 18:23:02 INFO scheduler.TaskSetManager: Starting task 0.1 in stage 5.0 (TID 4009, node-hadoop64.com, executor 7, partition 0, RACK_LOCAL, 8608 bytes)

关注一下具体的cause

Caused by: java.lang.UnsupportedOperationExceptionat java.util.AbstractMap.put(AbstractMap.java:209)

1. 原因

原来是因为序列化的问题,在使用java api的时候,如果broadcast的变量是使用line_RDD_2.collectAsMap()的方式产生的,那么被广播的类型就是Map, kryo 不知道真实的对象类型,所以就会采用AbstractMap来进行解析。

2. 解决方案

所以我们要新建一个map,将line_RDD_2.collectAsMap()放入新建的map即可。

原来的代码为

    Map<String, Long> getNameToId(Dataset<Row> labelDimTable) {return  labelDimTable.javaRDD().mapToPair(new PairFunction() {@Overridepublic Tuple2 call(Object object) throws Exception {Row curRow = (Row) object;Long labelId = curRow.getAs("label_id");String labelTitle = curRow.getAs("label_title");return Tuple2.apply(labelTitle, labelId);}}).collectAsMap();}

修改为

Map<String, Long> getNameToId(Dataset<Row> labelDimTable) {Map<String, Long> res = new HashMap<>();Map<String, Long> apiMap=  labelDimTable.javaRDD().mapToPair(new PairFunction() {@Overridepublic Tuple2 call(Object object) throws Exception {Row curRow = (Row) object;Long labelId = curRow.getAs("label_id");String labelTitle = curRow.getAs("label_title");return Tuple2.apply(labelTitle, labelId);}}).collectAsMap();res.putAll(apiMap);return res;}

参考
https://www.jianshu.com/p/f478376bdbb9
https://stackoverflow.com/questions/43023961/spark-kryo-serializers-and-broadcastmapobject-iterablegowalladatalocation

这篇关于java-spark广播变量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124346

相关文章

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

Spring Security 基于表达式的权限控制

前言 spring security 3.0已经可以使用spring el表达式来控制授权,允许在表达式中使用复杂的布尔逻辑来控制访问的权限。 常见的表达式 Spring Security可用表达式对象的基类是SecurityExpressionRoot。 表达式描述hasRole([role])用户拥有制定的角色时返回true (Spring security默认会带有ROLE_前缀),去

浅析Spring Security认证过程

类图 为了方便理解Spring Security认证流程,特意画了如下的类图,包含相关的核心认证类 概述 核心验证器 AuthenticationManager 该对象提供了认证方法的入口,接收一个Authentiaton对象作为参数; public interface AuthenticationManager {Authentication authenticate(Authenti

Spring Security--Architecture Overview

1 核心组件 这一节主要介绍一些在Spring Security中常见且核心的Java类,它们之间的依赖,构建起了整个框架。想要理解整个架构,最起码得对这些类眼熟。 1.1 SecurityContextHolder SecurityContextHolder用于存储安全上下文(security context)的信息。当前操作的用户是谁,该用户是否已经被认证,他拥有哪些角色权限…这些都被保

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物

Java进阶13讲__第12讲_1/2

多线程、线程池 1.  线程概念 1.1  什么是线程 1.2  线程的好处 2.   创建线程的三种方式 注意事项 2.1  继承Thread类 2.1.1 认识  2.1.2  编码实现  package cn.hdc.oop10.Thread;import org.slf4j.Logger;import org.slf4j.LoggerFactory

变量与命名

引言         在前两个课时中,我们已经了解了 Python 程序的基本结构,学习了如何正确地使用缩进来组织代码,并且知道了注释的重要性。现在我们将进一步深入到 Python 编程的核心——变量与命名。变量是我们存储数据的主要方式,而合理的命名则有助于提高代码的可读性和可维护性。 变量的概念与使用         在 Python 中,变量是一种用来存储数据值的标识符。创建变量很简单,

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听