java-spark广播变量

2024-08-31 15:58
文章标签 java 广播 变量 spark

本文主要是介绍java-spark广播变量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 1. java spark使用广播变量方式
    • 2. 运行时spark任务报错
      • 1. 原因
      • 2. 解决方案

1. java spark使用广播变量方式

在java spark中如果想要使用广播变量需要使用JavaSparkContext.broadcast()方法
代码如下

SparkSession sparkSession = SparkSession.builder().config(sparkConf).getOrCreate();JavaSparkContext javaSparkContext = JavaSparkContext.fromSparkContext(sparkSession.sparkContext());Dataset<Row> labelDimensionTable = sparkSession.read().parquet(labelDimPath);Map<String, Long> labelNameToId = getNameToId(labelDimensionTable);Broadcast<Map<String, Long>> labelNameIdBroadcast = javaSparkContext.broadcast(labelNameToId);Map<String, Long> getNameToId(Dataset<Row> labelDimTable) {return  labelDimTable.javaRDD().mapToPair(new PairFunction() {@Overridepublic Tuple2 call(Object object) throws Exception {Row curRow = (Row) object;Long labelId = curRow.getAs("label_id");String labelTitle = curRow.getAs("label_title");return Tuple2.apply(labelTitle, labelId);}}).collectAsMap();}

2. 运行时spark任务报错


20/09/09 18:23:00 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 5.0 (TID 4008, node-hadoop67.com, executor 3, partition 0, RACK_LOCAL, 8608 bytes)
20/09/09 18:23:00 INFO storage.BlockManagerInfo: Added broadcast_9_piece0 in memory on node-hadoop67.com:23191 (size: 41.1 KB, free: 2.5 GB)
20/09/09 18:23:01 INFO storage.BlockManagerInfo: Added broadcast_8_piece0 in memory on node-hadoop67.com:23191 (size: 33.5 KB, free: 2.5 GB)
20/09/09 18:23:02 INFO storage.BlockManagerInfo: Added broadcast_5_piece1 in memory on node-hadoop67.com:23191 (size: 698.1 KB, free: 2.5 GB)
20/09/09 18:23:02 INFO storage.BlockManagerInfo: Added broadcast_5_piece0 in memory on node-hadoop67.com:23191 (size: 4.0 MB, free: 2.5 GB)
20/09/09 18:23:02 WARN scheduler.TaskSetManager: Lost task 0.0 in stage 5.0 (TID 4008, node-hadoop67.com, executor 3): java.io.IOException: java.lang.UnsupportedOperationExceptionat org.apache.spark.util.Utils$.tryOrIOException(Utils.scala:1367)at org.apache.spark.broadcast.TorrentBroadcast.readBroadcastBlock(TorrentBroadcast.scala:207)at org.apache.spark.broadcast.TorrentBroadcast._value$lzycompute(TorrentBroadcast.scala:66)at org.apache.spark.broadcast.TorrentBroadcast._value(TorrentBroadcast.scala:66)at org.apache.spark.broadcast.TorrentBroadcast.getValue(TorrentBroadcast.scala:96)at com.kk.search.user_profile.task.user_profile.UserLabelProfile$1.call(UserLabelProfile.java:157)at org.apache.spark.sql.Dataset$$anonfun$44.apply(Dataset.scala:2605)at org.apache.spark.sql.Dataset$$anonfun$44.apply(Dataset.scala:2605)at org.apache.spark.sql.execution.MapPartitionsExec$$anonfun$5.apply(objects.scala:188)at org.apache.spark.sql.execution.MapPartitionsExec$$anonfun$5.apply(objects.scala:185)at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:836)at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:836)at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:49)at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:49)at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:49)at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:49)at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)at org.apache.spark.scheduler.Task.run(Task.scala:109)at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:381)at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.UnsupportedOperationExceptionat java.util.AbstractMap.put(AbstractMap.java:209)at com.esotericsoftware.kryo.serializers.MapSerializer.read(MapSerializer.java:162)at com.esotericsoftware.kryo.serializers.MapSerializer.read(MapSerializer.java:39)at com.esotericsoftware.kryo.Kryo.readClassAndObject(Kryo.java:790)at org.apache.spark.serializer.KryoDeserializationStream.readObject(KryoSerializer.scala:278)at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$8.apply(TorrentBroadcast.scala:308)at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1394)at org.apache.spark.broadcast.TorrentBroadcast$.unBlockifyObject(TorrentBroadcast.scala:309)at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$readBroadcastBlock$1$$anonfun$apply$2.apply(TorrentBroadcast.scala:235)at scala.Option.getOrElse(Option.scala:121)at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$readBroadcastBlock$1.apply(TorrentBroadcast.scala:211)at org.apache.spark.util.Utils$.tryOrIOException(Utils.scala:1360)... 29 more20/09/09 18:23:02 INFO scheduler.TaskSetManager: Starting task 0.1 in stage 5.0 (TID 4009, node-hadoop64.com, executor 7, partition 0, RACK_LOCAL, 8608 bytes)

关注一下具体的cause

Caused by: java.lang.UnsupportedOperationExceptionat java.util.AbstractMap.put(AbstractMap.java:209)

1. 原因

原来是因为序列化的问题,在使用java api的时候,如果broadcast的变量是使用line_RDD_2.collectAsMap()的方式产生的,那么被广播的类型就是Map, kryo 不知道真实的对象类型,所以就会采用AbstractMap来进行解析。

2. 解决方案

所以我们要新建一个map,将line_RDD_2.collectAsMap()放入新建的map即可。

原来的代码为

    Map<String, Long> getNameToId(Dataset<Row> labelDimTable) {return  labelDimTable.javaRDD().mapToPair(new PairFunction() {@Overridepublic Tuple2 call(Object object) throws Exception {Row curRow = (Row) object;Long labelId = curRow.getAs("label_id");String labelTitle = curRow.getAs("label_title");return Tuple2.apply(labelTitle, labelId);}}).collectAsMap();}

修改为

Map<String, Long> getNameToId(Dataset<Row> labelDimTable) {Map<String, Long> res = new HashMap<>();Map<String, Long> apiMap=  labelDimTable.javaRDD().mapToPair(new PairFunction() {@Overridepublic Tuple2 call(Object object) throws Exception {Row curRow = (Row) object;Long labelId = curRow.getAs("label_id");String labelTitle = curRow.getAs("label_title");return Tuple2.apply(labelTitle, labelId);}}).collectAsMap();res.putAll(apiMap);return res;}

参考
https://www.jianshu.com/p/f478376bdbb9
https://stackoverflow.com/questions/43023961/spark-kryo-serializers-and-broadcastmapobject-iterablegowalladatalocation

这篇关于java-spark广播变量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124346

相关文章

springboot集成easypoi导出word换行处理过程

《springboot集成easypoi导出word换行处理过程》SpringBoot集成Easypoi导出Word时,换行符n失效显示为空格,解决方法包括生成段落或替换模板中n为回车,同时需确... 目录项目场景问题描述解决方案第一种:生成段落的方式第二种:替换模板的情况,换行符替换成回车总结项目场景s

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot中@Value注入静态变量方式

《SpringBoot中@Value注入静态变量方式》SpringBoot中静态变量无法直接用@Value注入,需通过setter方法,@Value(${})从属性文件获取值,@Value(#{})用... 目录项目场景解决方案注解说明1、@Value("${}")使用示例2、@Value("#{}"php

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

java.sql.SQLTransientConnectionException连接超时异常原因及解决方案

《java.sql.SQLTransientConnectionException连接超时异常原因及解决方案》:本文主要介绍java.sql.SQLTransientConnectionExcep... 目录一、引言二、异常信息分析三、可能的原因3.1 连接池配置不合理3.2 数据库负载过高3.3 连接泄漏