【kubernetes】Deployment介绍和应用

2024-08-31 01:44

本文主要是介绍【kubernetes】Deployment介绍和应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一,Deployment介绍

概述

Deployment是k8s中最常用的资源对象,它为ReplicaSet和Pod的创建提供了一种声明式的定义方法。

在Deployment对象中描述一个期望的状态,Deployment控制器就会按照一定的控制速率把实际状态改成期望状态。

通过定义一个Deployment控制器,会创建一个新的ReplicaSet控制器,通过ReplicaSet创建pod,删除Deployment控制器,也会删除Deployment控制器下对应的ReplicaSet控制器和pod资源。

优点

使用Deployment而不直接创建ReplicaSet,是因为Deployment对象拥有许多ReplicaSet没有的特性,例如滚动升级、金丝雀发布、蓝绿部署和回滚。

理解

Deployment控制器是建立在ReplicaSet之上的一个控制器,可以管理多个ReplicaSet,每次更新镜像版本,都会生成一个新的ReplicaSet,把旧的ReplicaSet替换掉,多个rs同时存在,但是只有一个ReplicaSet运行。

功能

1、创建ReplicaSet和Pod
2、滚动升级(不停止旧服务的状态下升级)和回滚应用(将应用回滚到之前的版本)
3、平滑地扩容和缩容
4、暂停和继续Deployment

Deploy文件编写技巧

kubectl explain deployment[deploy]

扩容/缩容

基本的办法:直接更改yaml文件内的replicas的值。
调大,扩容;调小,缩容。
在这里插入图片描述

二,Deployment命令

查看deploy的[deploy名]的历史版本:

kubectl rollout history deployment [deploy名]

回滚到第1个版本( 也是初始版本 ):

kubectl rollout undo deployment/[deploy名] --to-revision=1

三,自定义滚动更新策略

maxSurge和maxUnavailable用来控制滚动更新的取值范围

【数值】:

  1. maxUnavailable: [0, 副本数]
  2. maxSurge: [0, 副本数]
    注意:两者不能同时为0。

【比例】:

  1. maxUnavailable: [0%, 100%] 向下取整,比如10个副本,5%的话==0.5个,但计算按照0个;
  2. maxSurge: [0%, 100%] 向上取整,比如10个副本,5%的话==0.5个,但计算按照1个;
    注意:两者不能同时为0。

【建议配置】

  1. maxUnavailable == 0
  2. maxSurge == 1
    这是我们生产环境提供给用户的默认配置。即“一上一下,先上后下”最平滑原则。

【总结】
(1)maxUnavailable:和期望的副本数比,不可用副本数最大比例(或最大值),这个值越小,越能保证服务稳定,更新越平滑;
maxSurge:和期望的副本数比,超过期望副本数最大比例(或最大值),这个值调的越大,副本更新速度越快。

(2)recreate这种更新策略,会把之前的所有pod都删除,再创建新的pod,风险很大

这篇关于【kubernetes】Deployment介绍和应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1122530

相关文章

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

zoj3820(树的直径的应用)

题意:在一颗树上找两个点,使得所有点到选择与其更近的一个点的距离的最大值最小。 思路:如果是选择一个点的话,那么点就是直径的中点。现在考虑两个点的情况,先求树的直径,再把直径最中间的边去掉,再求剩下的两个子树中直径的中点。 代码如下: #include <stdio.h>#include <string.h>#include <algorithm>#include <map>#

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略 1. 特权模式限制2. 宿主机资源隔离3. 用户和组管理4. 权限提升控制5. SELinux配置 💖The Begin💖点点关注,收藏不迷路💖 Kubernetes的PodSecurityPolicy(PSP)是一个关键的安全特性,它在Pod创建之前实施安全策略,确保P