本文主要是介绍6-uboot relocation介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
[uboot] (番外篇)uboot relocation介绍
以下例子都以project X项目tiny210(s5pv210平台,armv7架构)为例
[uboot] uboot流程系列:
[project X] tiny210(s5pv210)上电启动流程(BL0-BL2)
[uboot] (第一章)uboot流程——概述
[uboot] (第二章)uboot流程——uboot-spl编译流程
========================================================================================================
一、relocate介绍
1、uboot的relocate
uboot的relocate动作就是指uboot的重定向动作,也就是将uboot自身镜像拷贝到ddr上的另外一个位置的动作。
2、uboot为什么要进行relocate
考虑以下问题
* 在某些情况下,uboot是在某些只读存储器上运行,比如ROM、nor flash等等。需要将这部分代码拷贝到DDR上才能完整运行uboot。
(当然,如果我们在spl阶段就把uboot拷贝到ddr上,就不会有这种情况。但是uboot本身就是要考虑各种可能性)
* 一般会把kernel放在ddr的低端地址上。
考虑到以上情况,uboot的relocation动作会把自己本身relocate到ddr上(前提是在SPL的过程中或者在dram_init中已经对ddr进行初始化了),并且会relocate到ddr的顶端地址使之不会和kernel的冲突。
3、uboot的一些注意事项
- 既然uboot会把自身relocate到ddr的其他位置上,那么相当于执行地址也会发生变化。也就是要求uboot既要能在relocate正常执行,也要能在relocate之后正常执行。这就涉及到uboot需要使用“位置无关代码”技术,也就是Position independent code技术。
二、“位置无关代码”介绍及其原理
1、什么是“位置无关代码”
“位置无关代码”是指无论代码加载到内存上的什么地址上,都可以被正常运行。也就是当加载地址和连接地址不一样时,CPU也可以通过相对寻址获得到正确的指令地址。
2、如何生成“位置无关代码”
(1)生成位置无关代码分成两部分
* 首先是编译源文件的时候,需要将其编译成位置无关代码,主要通过gcc的-fpic选项(也有可能是fPIC,fPIE, mword-relocations选项)
* 其次是连接时要将其连接成一个完整的位置无关的可执行文件,主要通过ld的-fpie选项
(2)ARM在如何生成“位置无关代码”
* 编译PIC代码
在《[uboot] (第四章)uboot流程——uboot编译流程》中,我们知道gcc的编译选项如下:
c_flags=-Wp,-MD,arch/arm/mach-s5pc1xx/.clock.o.d -nostdinc -isystem /home/disk3/xys/temp/project-x/build/arm-none-linux-gnueabi-4.8/bin/../lib/gcc/arm-none-linux-gnueabi/4.8.3/include -Iinclude -I/home/disk3/xys/temp/project-x/u-boot/include -I/home/disk3/xys/temp/project-x/u-boot/arch/arm/include -include /home/disk3/xys/temp/project-x/u-boot/include/linux/kconfig.h -I/home/disk3/xys/temp/project-x/u-boot/arch/arm/mach-s5pc1xx -Iarch/arm/mach-s5pc1xx -D__KERNEL__ -D__UBOOT__ -Wall -Wstrict-prototypes -Wno-format-security -fno-builtin -ffreestanding -Os -fno-stack-protector -fno-delete-null-pointer-checks -g -fstack-usage -Wno-format-nonliteral -D__ARM__ -marm -mno-thumb-interwork -mabi=aapcs-linux -mword-relocations -fno-pic -mno-unaligned-access -ffunction-sections -fdata-sections -fno-common -ffixed-r9 -msoft-float -pipe -march=armv7-a -I/home/disk3/xys/temp/project-x/u-boot/arch/arm/mach-s5pc1xx/include -DKBUILD_STR(s)=#s -DKBUILD_BASENAME=KBUILD_STR(clock) -DKBUILD_MODNAME=KBUILD_STR(clock)
- 1
重点关注“-mword-relocations -fno-pic”。
由于使用pic时movt / movw指令会硬编码16bit的地址域,而uboot的relocation并不支持这个,
所以arm平台使用mword-relocations来生成位置无关代码。-fno-pic则表示不使用pic。
如下./arch/arm/config.mk
# The movt / movw can hardcode 16 bit parts of the addresses in the
# instruction. Relocation is not supported for that case, so disable
# such usage by requiring word relocations.
PLATFORM_CPPFLAGS += $(call cc-option, -mword-relocations)
PLATFORM_CPPFLAGS += $(call cc-option, -fno-pic)
- 1
- 2
- 3
- 4
- 5
- 生成PIE可执行文件
在《[uboot] (第四章)uboot流程——uboot编译流程》中,我们知道ld的连接选项如下:
LDFLAGS_u-boot=-pie --gc-sections -Bstatic -Ttext 0x23E00000
- 1
-pie选项用于生成PIE位置无关可执行文件。
3、“位置无关代码”原理
这里只是个人根据实验的一些看法。
“位置无关代码”主要是通过使用一些只会使用相对地址的指令实现,比如“b”、“bl”、“ldr”、“adr”等等。
对于一些绝对地址符号(例如已经初始化的全局变量),会将其以label的形式放在每个函数的代码实现的末端。
同时,在链接的过程中,会把这些label的地址统一维护在.rel.dyn段中,当relocation的时候,方便对这些地址的fix。
综上,个人觉得,既然使用绝对地址,那么就是说并不是完全的代码无关,而是说可以通过调整绝对地址符号的label表来实现代码的搬移。如果不做relocate或者在relocate之前还是需要加载到连接地址的位置上,这里只是个人看法!!!
个人也挺迷惑的,不知道对不对,这里希望有知道答案的大神给个意见。
4、.rel.dyn段介绍和使用
前面也说了:
对于一些绝对地址符号(例如已经初始化的全局变量),会将其以label的形式放在每个函数的代码实现的末端。
同时,在链接的过程中,会把这些label的地址统一维护在.rel.dyn段中,当relocation的时候,方便对这些地址的fix。
这边简单的给个例子:
u-boot/common/board_f.c中
static init_fnc_t init_sequence_f[] = {
// 这里定义了全局变量init_sequence_f
}void board_init_f(ulong boot_flags)
{if (initcall_run_list(init_sequence_f))
// 这里使用了全局变量init_sequence_fhang();
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
通过如下命令对编译生成的u-boot
arm-none-linux-gnueabi-objdump -D u-boot > uboot_objdump.txt
- 1
board_init_f和init_sequence_f相关的连接地址如下:
Disassembly of section .text:
23e08428 <board_init_f>:
23e08438: e59f000c ldr r0, [pc, #12] ; 23e0844c <board_init_f+0x24>
// 通过ldr r0, [pc, #12],相当于是ldr r0,[23e0844c] ,
// 也就是通过后面的label项,获得了init_sequence_f的地址。23e0844c: 23e35dcc mvncs r5, #204, 26 ; 0x3300
// 23e0844c: 23e35dcc 是一个label项,23e0844c表示这个label的地址,23e35dcc表示这个label里面的值,也就是全局变量23e35dcc的地址。Disassembly of section .data:
23e35dcc <init_sequence_f>:
// 全局变量init_sequence_f的地址在23e35dcc Disassembly of section .rel.dyn:
23e37b88: 23e0844c mvncs r8, #76, 8 ; 0x4c000000
23e37b8c: 00000017 andeq r0, r0, r7, lsl r0
// 把init_sequence_f的label的地址存在.rel.dyn段中,方便后续relocation的时候,对label中的绝对变量地址进行整理修改。
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
各个符号的地址意义
- 23e08428,是board_init_f的地址
- 23e35dcc,是init_sequence_f的地址
- 23e0844c,是board_init_f为init_sequence_f做的label的地址,所以其值是init_sequence_f的地址,也就是23e35dcc
- 23e37b88,把init_sequence_f的label的地址存放在.rel.dyn段中的这个位置
根据上述对全局变量的寻址进行简单的说明
当board_init_f读取init_sequence_f时,会通过相对偏移获取init_sequence_f的label的地址(23e0844c),再从23e0844c中获取到init_sequence_f的地址(23e35dcc)。
综上,当uboot对自身进行relocate之后,此时全局变量的绝对地址已经发生变化,如果函数按照原来的label去获取全局变量的地址的时候,这个地址其实是relocate之前的地址。因此,在relocate的过程中需要对全局变量的label中的地址值进行修改,所以uboot将这些label的地址全部维护在.rel.dyn段中,然后再统一对.rel.dyn段指向的label进行修改。后续代码可以看出来。
三、uboot relocate代码介绍
1、uboot relocate地址和布局。
前面已经说明,uboot的relocation动作会把自己本身relocate到ddr上(前提是在SPL的过程中或者在dram_init中已经对ddr进行初始化了),并且会relocate到ddr的顶端地址使之不会和kernel的冲突。
但是relocate过程中,并不是直接把uboot直接放到ddr的顶端位置,而是会有一定的布局,预留一些空间给其他一些需要固定空间的功能使用。
- uboot relocate从高地址到低地址布局如下(并不是所有的区域都是需要的,可以根据宏定义来确定),注意,对应区域的size在这个时候都是确定的,不会发生变化了。
relocate区域 | size |
---|---|
prom页表区域 | 8192byte |
logbuffer | LOGBUFF_RESERVE |
pram区域 | CONFIG_PRAM<<10 |
round_4k | 用于4kb对齐 |
mmu页表区域 | PGTABLE_SIZE |
video buffer | 不关心。但是是确定的。不会随着代码变化 |
lcd buffer | 不关心。但是是确定的。不会随着代码变化 |
trace buffer | CONFIG_TRACE_BUFFER_SIZE |
uboot代码区域 | gd->mon_len,并且对齐4KB对齐 |
malloc内存池 | TOTAL_MALLOC_LEN |
Board Info区域 | sizeof(bd_t) |
新global_data区域 | sizeof(gd_t) |
fdt区域 | gd->fdt_size |
对齐 | 16b对齐 |
堆栈区域 | 无限制 |
2、relocate代码流程
主要是分成如下流程
* 对relocate进行空间规划
* 计算uboot代码空间到relocation的位置的偏移
* relocate旧的global_data到新的global_data的空间上
* relocate旧的uboot代码空间到新的空间上去
* 修改relocate之后全局变量的label。(不懂的话参考第二节)
* relocate中断向量表
(1)首先看一下relocate的整体代码
去掉无关代码的代码如下:
arch/arm/lib/crt0.S
ENTRY(_main)bl board_init_f
@@ 在board_init_f里面实现了
@@ (1)对relocate进行空间规划
@@ (2)计算uboot代码空间到relocation的位置的偏移
@@ (3)relocate旧的global_data到新的global_data的空间上ldr sp, [r9, #GD_START_ADDR_SP] /* sp = gd->start_addr_sp */bic sp, sp, #7 /* 8-byte alignment for ABI compliance */ldr r9, [r9, #GD_BD] /* r9 = gd->bd */sub r9, r9, #GD_SIZE /* new GD is below bd */
@@ 把新的global_data地址放在r9寄存器中adr lr, hereldr r0, [r9, #GD_RELOC_OFF] /* r0 = gd->reloc_off */add lr, lr, r0
@@ 计算返回地址在新的uboot空间中的地址。b调用函数返回之后,就跳到了新的uboot代码空间中。ldr r0, [r9, #GD_RELOCADDR] /* r0 = gd->relocaddr */
@@ 把uboot的新的地址空间放到r0寄存器中,作为relocate_code的参数b relocate_code
@@ 跳转到relocate_code中,在这里面实现了
@@ (1)relocate旧的uboot代码空间到新的空间上去
@@ (2)修改relocate之后全局变量的label
@@ 注意,由于上述已经把lr寄存器重定义到uboot新的代码空间中了,所以返回之后,就已经跳到了新的代码空间了!!!!!!bl relocate_vectors
@@ relocate中断向量表
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
注意上面的注释,从relocate_code返回之后就已经在新的uboot代码空间中运行了。
这里简单地说明一下board_init_f:
static init_fnc_t init_sequence_f[] = {
#ifdef CONFIG_SANDBOXsetup_ram_buf,
#endifsetup_mon_len,
#ifdef CONFIG_OF_CONTROLfdtdec_setup,
#endif
#ifdef CONFIG_TRACEtrace_early_init,
...
}
// 可以看出init_sequence_f是一个函数指针数组void board_init_f(ulong boot_flags)
{if (initcall_run_list(init_sequence_f))
// 在这里会init_sequence_f里面的函数hang();
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
(2)对relocate进行空间规划
布局已经在上面说过了。
其规划只要体现在gd一些指针的设置,如下面所示
——————————————————— <—–(gd->ram_top)
| 最高的区域
———————————————————
| ……
———————————————————
| uboot代码区域
——————————————————— <—–(gd->relocaddr)
| ……
———————————————————
| Board Info区域
——————————————————— <—–(gd->bd)
| 新global_data区域
——————————————————— <—–(gd->new_gd)
| fdt区域
——————————————————— <—–(gd->new_fdt)
| …..
——————————————————— <—–(gd->start_addr_sp)
| 堆栈区域
———————————————————
在board_init_f中,会依次执行init_sequence_f数组里面函数。其中,和relocate空间规划的函数如下:
static init_fnc_t init_sequence_f[] = {setup_dest_addr,
#if defined(CONFIG_SPARC)reserve_prom,
#endif
#if defined(CONFIG_LOGBUFFER) && !defined(CONFIG_ALT_LB_ADDR)reserve_logbuffer,
#endif
#ifdef CONFIG_PRAMreserve_pram,
#endifreserve_round_4k,
#if !(defined(CONFIG_SYS_ICACHE_OFF) && defined(CONFIG_SYS_DCACHE_OFF)) && \defined(CONFIG_ARM)reserve_mmu,
#endif
#ifdef CONFIG_DM_VIDEOreserve_video,
#else
# ifdef CONFIG_LCDreserve_lcd,
# endif/* TODO: Why the dependency on CONFIG_8xx? */
# if defined(CONFIG_VIDEO) && (!defined(CONFIG_PPC) || defined(CONFIG_8xx)) && \!defined(CONFIG_ARM) && !defined(CONFIG_X86) && \!defined(CONFIG_BLACKFIN) && !defined(CONFIG_M68K)reserve_legacy_video,
# endif
#endif /* CONFIG_DM_VIDEO */reserve_trace,
#if !defined(CONFIG_BLACKFIN)reserve_uboot,
#endif
#ifndef CONFIG_SPL_BUILDreserve_malloc,reserve_board,
#endifsetup_machine,reserve_global_data,reserve_fdt,reserve_arch,reserve_stacks,
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
代码里面都是一些简单的减法以及指针的设置。可以参考上述“区域布局”和指针设置自己看一下代码,这里不详细说明。
这里说明一下setup_dest_addr,也就是一些指针的初始化。
static int setup_dest_addr(void)
{debug("Monitor len: %08lX\n", gd->mon_len);
// gd->mon_len表示了整个uboot代码空间的大小,如下
// gd->mon_len = (ulong)&__bss_end - (ulong)_start;
// 在uboot代码空间relocate的时候,relocate的size就是由这里决定debug("Ram size: %08lX\n", (ulong)gd->ram_size);
// gd->ram_size表示了ram的size,也就是可使用的ddr的size,在board.c中定义如下
// int dram_init(void)
// {
// gd->ram_size = PHYS_SDRAM_1_SIZE;也就是0x2000_0000
// return 0;
// }#ifdef CONFIG_SYS_SDRAM_BASEgd->ram_top = CONFIG_SYS_SDRAM_BASE;
#endifgd->ram_top += get_effective_memsize();gd->ram_top = board_get_usable_ram_top(gd->mon_len);
// gd->ram_top计算ddr的顶端地址
// CONFIG_SYS_SDRAM_BASE(0x2000_0000+0x2000_0000=0x4000_0000)gd->relocaddr = gd->ram_top;
// 从gd->ram_top的位置开始分配debug("Ram top: %08lX\n", (ulong)gd->ram_top);return 0;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
(3)计算uboot代码空间到relocation的位置的偏移
同样在board_init_f中,调用init_sequence_f数组里面的setup_reloc实现。
static int setup_reloc(void)
{
#ifdef CONFIG_SYS_TEXT_BASEgd->reloc_off = gd->relocaddr - CONFIG_SYS_TEXT_BASE;
// gd->relocaddr表示新的uboot代码空间的起始地址,CONFIG_SYS_TEXT_BASE表示旧的uboot代码空间的起始地址,二者算起来就是偏移了。
#endif
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
(4)relocate旧的global_data到新的global_data的空间上
同样在board_init_f中,调用init_sequence_f数组里面的setup_reloc实现。
static int setup_reloc(void)
{memcpy(gd->new_gd, (char *)gd, sizeof(gd_t));
// 直接把gd的地址空间拷贝到gd->new_gd中
}
- 1
- 2
- 3
- 4
- 5
(5)relocate旧的uboot代码空间到新的空间上去
代码在relocate_code中,上述(1)中可以知道此时的r0是uboot的新的地址空间。
主要目的是把__image_copy_start到__image_copy_end的代码空间拷贝到新的uboot地址空间中。
关于__image_copy_start和__image_copy_end可以看《[uboot] (第四章)uboot流程——uboot编译流程》
ENTRY(relocate_code)ldr r1, =__image_copy_start /* r1 <- SRC &__image_copy_start */
// 获取uboot代码空间的首地址subs r4, r0, r1 /* r4 <- relocation offset */
// 计算新旧uboot代码空间的偏移beq relocate_done /* skip relocation */ldr r2, =__image_copy_end /* r2 <- SRC &__image_copy_end */
// 获取uboot代码空间的尾地址copy_loop:ldmia r1!, {r10-r11} /* copy from source address [r1] */stmia r0!, {r10-r11} /* copy to target address [r0] */cmp r1, r2 /* until source end address [r2] */blo copy_loop
// 把旧代码空间复制到新代码空间中。
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
(6)修改relocate之后全局变量的label
需要先完全理解第二节““位置无关代码”介绍及其原理”
主要目的是修改label中的地址。
这里复习一下:
* 绝对地址符号的地址会放在label中提供位置无关代码使用
* label的地址会放在.rel.dyn段中
综上,当uboot对自身进行relocate之后,此时全局变量的绝对地址已经发生变化,如果函数按照原来的label去获取全局变量的地址的时候,这个地址其实是relocate之前的地址。因此,在relocate的过程中需要对全局变量的label中的地址值进行修改,所以uboot将这些label的地址全部维护在.rel.dyn段中,然后再统一对.rel.dyn段指向的label进行修改。后续代码可以看出来。
.rel.dyn段部分示例如下:
23e37b88: 23e0844c mvncs r8, #76, 8 ; 0x4c000000
23e37b8c: 00000017 andeq r0, r0, r7, lsl r0
23e37b90: 23e084b4 mvncs r8, #180, 8 ; 0xb4000000
23e37b94: 00000017 andeq r0, r0, r7, lsl r0
23e37b98: 23e084d4 mvncs r8, #212, 8 ; 0xd4000000
23e37b9c: 00000017 andeq r0, r0, r7, lsl r0
23e37ba0: 23e0854c mvncs r8, #76, 10 ; 0x13000000
23e37ba4: 00000017 andeq r0, r0, r7, lsl r0
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
可以看出.rel.dyn段用了8个字节来描述一个label,其中,高4字节是label地址标识0x17,低4字节就是label的地址。
所以需要先判断label地址标识是否正确,然后再根据第四字节获取label,对label中的符号地址进行修改。
代码如下:
ENTRY(relocate_code)/** fix .rel.dyn relocations*/ldr r2, =__rel_dyn_start /* r2 <- SRC &__rel_dyn_start */ldr r3, =__rel_dyn_end /* r3 <- SRC &__rel_dyn_end */
// __rel_dyn段是由链接器生成的。
// 把__rel_dyn_start放到r2中,把__rel_dyn_end放到r3中fixloop:ldmia r2!, {r0-r1} /* (r0,r1) <- (SRC location,fixup) */
// 从__rel_dyn_start开始,加载两个字节到r0和r1中,高字节存在r1中表示标志,低字节存在r0中,表示label地址。and r1, r1, #0xffcmp r1, #23 /* relative fixup? */
// 比较高4字节是否等于0x17bne fixnext
// 不等于的话,说明不是描述label地址,进行下一次循环// label在relocate uboot的时候也已经复制到了新的uboot地址空间了!!!
// 这里要注意,是对新的uboot地址空间label进行修改!!!/* relative fix: increase location by offset */add r0, r0, r4
// 获取新的uboot地址空间的label地址,
// 因为r0存的是旧地址空间的label地址,而新地址空间的label地址就是在旧地址空间的label地址加上偏移得到
// r4就是relocate offset,也就是新旧地址空间的偏移ldr r1, [r0]
// 从label中获取绝对地址符号的地址,存放在r1中add r1, r1, r4str r1, [r0]
// 根据前面的描述,我们的目的就是要fix label中绝对地址符号的地址,也就是将其修改为新地址空间的地址
// 所以为r1加上偏移之后,重新存储到label中。
// 后面CPU就可以根据LABEL在新uboot的地址空间中寻址到正确的符号。fixnext:cmp r2, r3blo fixloop
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
(7)relocate中断向量表
前面在《[uboot] (第四章)uboot流程——uboot编译流程》中已经分析了,异常中断向量表的定义如下
arch/arm/lib/vectors.S
.globl _undefined_instruction.globl _software_interrupt.globl _prefetch_abort.globl _data_abort.globl _not_used.globl _irq.globl _fiq_undefined_instruction: .word undefined_instruction
_software_interrupt: .word software_interrupt
_prefetch_abort: .word prefetch_abort
_data_abort: .word data_abort
_not_used: .word not_used
_irq: .word irq
_fiq: .word fiq
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
我们知道arm的异常中断向量表需要复制到0x00000000处或者0xFFFF0000处(不知道的建议网上度娘一下)。
当uboot进行relocate之后,其异常处理函数的地址也发生了变化,因此,我们需要把新的异常中断向量表复制到0x00000000处或者0xFFFF0000处。
这部分操作就是在relocate_vectors中进行。
异常中断向量表在uboot代码空间中的地址如下:
23e00000 <__image_copy_start>:
23e00000: ea0000be b 23e00300 <reset>
23e00004: e59ff014 ldr pc, [pc, #20] ; 23e00020 <_undefined_instruction>
23e00008: e59ff014 ldr pc, [pc, #20] ; 23e00024 <_software_interrupt>
23e0000c: e59ff014 ldr pc, [pc, #20] ; 23e00028 <_prefetch_abort>
23e00010: e59ff014 ldr pc, [pc, #20] ; 23e0002c <_data_abort>
23e00014: e59ff014 ldr pc, [pc, #20] ; 23e00030 <_not_used>
23e00018: e59ff014 ldr pc, [pc, #20] ; 23e00034 <_irq>
23e0001c: e59ff014 ldr pc, [pc, #20] ; 23e00038 <_fiq> // 可以看出以下是异常终端向量表
23e00020 <_undefined_instruction>:
23e00020: 23e00060 mvncs r0, #96 ; 0x60
// 其中,23e00020存放的是未定义指令处理函数的地址,也就是23e00060
// 以下以此类推23e00024 <_software_interrupt>:
23e00024: 23e000c0 mvncs r0, #192 ; 0xc0 23e00028 <_prefetch_abort>:
23e00028: 23e00120 mvncs r0, #8 23e0002c <_data_abort>:
23e0002c: 23e00180 mvncs r0, #3223e00030 <_not_used>:
23e00030: 23e001e0 mvncs r0, #56 ; 0x38 23e00034 <_irq>:
23e00034: 23e00240 mvncs r0, #4 23e00038 <_fiq>:
23e00038: 23e002a0 mvncs r0, #10
23e0003c: deadbeef cdple 14, 10, cr11, cr13, cr15, {7}23e00040 <IRQ_STACK_START_IN>:
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
所以异常中断向量表就是从偏移0x20开始的32个字节。
代码如下(去除掉无关代码部分):
ENTRY(relocate_vectors)/** Copy the relocated exception vectors to the* correct address* CP15 c1 V bit gives us the location of the vectors:* 0x00000000 or 0xFFFF0000.*/
@@ 注意看注释,通过cp15协处理器的c1寄存器的V标志来判断cpu从什么位置获取中断向量表,
@@ 换句话说,就是中断向量表应该被复制到什么地方!!!ldr r0, [r9, #GD_RELOCADDR] /* r0 = gd->relocaddr */
@@ 获取uboot新地址空间的起始地址,存放到r0寄存器中mrc p15, 0, r2, c1, c0, 0 /* V bit (bit[13]) in CP15 c1 */ands r2, r2, #(1 << 13)ldreq r1, =0x00000000 /* If V=0 */ldrne r1, =0xFFFF0000 /* If V=1 */
@@ 获取cp15协处理器的c1寄存器的V标志,当V=0时,cpu从0x00000000获取中断向量表,当V=1时,cpu从0xFFFF0000获取中断向量表
@@ 将该地址存在r1中ldmia r0!, {r2-r8,r10}stmia r1!, {r2-r8,r10}
@@ 前面说了异常中断向量表就是从偏移0x20开始的32个字节。
@@ 所以这里是过滤掉前面的0x20个字节(32个字节,8*4)
@@ 但是不明白为什么还要stmia r1!, {r2-r8,r10},理论上只需要让r0的值产生0x20的偏移就可以了才对???不明白。@@ 经过上述两行代码之后,此时r0的值已经偏移了0x20了ldmia r0!, {r2-r8,r10}stmia r1!, {r2-r8,r10}
@@ 继续从0x20开始,获取32个字节,存储到r1指向的地址,也就是cpu获取中断向量表的地址
@@ r2-r8,r10表示从r2到r8寄存器和r10寄存器,一个8个寄存器,每个寄存器有4个字节,所以就从r0指向的地址处获取到了32个字节
@@ 再把 {r2-r8,r10}的值存放到r1指向的地址,也就是cpu获取中断向量表的地址bx lr
@@ 返回
ENDPROC(relocate_vectors)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
经过上述,uboot relocate就完成了。
这篇关于6-uboot relocation介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!