4.x版本内核中platform_device的生成

2024-08-30 17:32

本文主要是介绍4.x版本内核中platform_device的生成,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、Display Server

X Windows 和 X Server

The X Window System (X11, or shortened to simply X) is a windowing system for bitmap displays, common on UNIX-like computer operating systems. 
X provides the basic framework for a GUI environment: drawing and moving windows on the display device and interacting with a mouse and keyboard. X does not mandate the user interface – this is handled by individual programs. As such, the visual styling of X-based environments varies greatly; different programs may present radically different interfaces

X Windows 是用于位图显示的窗口系统,常用于 UNIX 系的操作系统上。它为 GUI 环境提供了基本框架:在显示设备上绘制和移动窗口,并与鼠标和键盘进行交互。 
它在设计之初,便秉承“提供机制,而非策略”的理念。(是的,和 Unix 设计哲学相同)所以它对用户接口不作要求,比如它提供了生成窗口(window)的方法,却对窗口呈现方式不作任何要求。 
另一个设计特点是它是基于 Client/Server 网络模型。不论本地还是远程应用程序,都统一通过 C/S 模型来运作。

我们看一下 X Windows 的架构图(图来自 imtx.me 作者 TualatriX):

拿一个简单的应用场景举例。点击按钮引发按钮更新动作。 
1. 内核捕获鼠标点击事件并发送给 X server。 
2. X Server 会计算该把这一事件发送给哪个窗口(事实上,窗口位置是由 Compositor 控制的,X Server 并不能够正确的计算 Compositor 做过特效变化之后的按钮的正确位置)。 
3. 应用程序对此事件进行处理(将引发按钮更新动作)。但是,在此之前它得向X Server 发送绘制请求。 
4. X Server 接收到这条绘制请求,然后把它发给视频驱动来渲染。X 还计算了更新区域,并且这条“垃圾信息”发送给了 Compositor。 
5. 这时,Compositor 知道它必须要重新合成屏幕上的一块区域。当然,这还是要向X Server发送绘制请求的。 
6. 开始绘制。但是 X Server 还会去做一些不必要的本职工作(窗口重叠计算、窗口剪裁计算等)。

我们通过一个实例理解了上面的架构图。 
它呈现出了一个缺点: 
X Client – X Server – Compositor 
三者的交互比较耗时,不是很高效。除了交互方面的问题,其实 X Server 还会做一些重复无意义的工作,这里不再赘述。 
有痛点就有解决方案,新一代的 Display Server 呼之欲出。 
接下来 Wayland 诞生了。

Wayland

Wayland is A Simple Display Server。 
它在诞生之初的使命是用于改善 X Server 的不足并取代它。 
但是现在看来它所作的不仅仅是替代 X Window 下的 X Server,也不仅仅是要取代 X Widnow。而是要颠覆 Linux 桌面上的 X Server/X Client 的概念。 
以 Compositor/Client 的结构取而代之。 
同时它复用了所有 Linux 内核图形和 I/O 技术:KMS、GEM、DRM、evdev。

其架构图如下(图来自 imtx.me 作者 TualatriX):

同样是上面那个实例,其流程如下: 
1. 内核捕获鼠标点击事件并发送给Wayland Compositor。 
2. 由于是直接发给Wayland Compositor的,所以Wayland Compositor会正确地计算出按钮的位置。同时它会把这一事件发送给按钮所在的应用程序来处理。 
3. 应用程序直接渲染,无需向Wayland Compositor请求。只需在绘制完成之后向Wayland Compositor发送一条信息表明这块区域被更新了。 
4. Wayland Compositor收到这条信息后,立即重新合成整个桌面。

所以基于 Wayland 的整个任务流程非常简单: 
1. 基于Wayland协议,处理evdev的信息; 
2. 通知Client(即应用程序)对相关事件做出反应(至于应用程序想怎么反应,Compositor不需要过问); 
3. 收到Client的状态更新,重新合成图形或管理新的图形布局。

简单的说,Waylannd 就是一个去除 X Window 中不必要的设计、充分利用现代 Linux 内核图形技术(DRM 子系统中的 KMS、GEM、DRM)的一个显示机制,它的出现是自然而然的,它的使命不是为了消灭X Window,而是将Linux的图形技术发挥至更高的一个境界。传统的X Window(即经典X应用、Gtk 1.x/2.x等旧应用),也会在相当长一段时间内得到继续支持,通过Wayland Client的形式跑在Wayland Compositor上,直到最终升级、取代或被淘汰。

有了以上背景,接下来我们便能更好的理解 DRM Subsystem 了。

二、DRM Subsystem

In computing, the Direct Rendering Manager (DRM), a subsystem of the Linux kernel, interfaces with the GPUs of modern video cards. DRM exposes an API that user-space programs can use to send commands and data to the GPU, and to perform operations such as configuring the mode setting of the display. DRM was first developed as the kernel space component of the X Server’s Direct Rendering Infrastructure,[1] but since then it has been used by other graphic stack alternatives such as Wayland. 
User-space programs can use the DRM API to command the GPU to do hardware-accelerated 3D rendering and video decoding as well as GPGPU computing. 
摘自 wipipedia

DRM,英文全称 Direct Rendering Manager, 即 直接渲染管理器。 
它是为了解决多个程序对 Video Card 资源的协同使用问题而产生的。它向用户空间提供了一组 API,用以访问操纵 GPU。

fbdev

Linux 早在很久以前就已经有一个名为 fbdev 的 API ,用于管理显卡的 framebuffer,但是它不能用于处理 基于视频卡的 GPU 的 3D 加速的需求。 
这些 Video Card 常常需要设置或者管理 卡内存(Video RAM)中的一些命令队列。将命令分配给 GPU,还需要管理 Video RAM 本身的 Buffer 和 Free Space。

在最初的用户空间的程序(比如 X Server)可以直接管理这些资源,但这些程序通常表现的就仿佛他们是唯一去获取这些资源的一样。当有多个程序试图去以自己的方式同时控制 Video Card 资源时,就会崩溃。

DRM

DRM 的诞生就是用来处理多个程序对 Video Card 资源的协同使用问题。 
DRM 获得对 Video Card 的独占访问权限,它负责初始化和维护命令队列、Video RAM 以及其他相关的硬件资源。

要使用 GPU 的程序将请求发送给 DRM,由 DRM 作为仲裁来避免冲突。 
DRM 到现在已经涵盖了以前由用户空间程序处理的很多功能,比如 帧缓存区的管理和模式设置,内存共享对象和内存同步。其中一些拓展具有特定的名称,比如图形执行管理器 GEM 或者内核模式设置 KMS,这些都是属于 DRM 子系统。 
DRM 同时也负责处理 GPUs 切换的问题。

在下一章,我们会开始介绍 Linux 源码中 DRM 的软件架构。





















这篇关于4.x版本内核中platform_device的生成的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1121470

相关文章

Linux内核参数配置与验证详细指南

《Linux内核参数配置与验证详细指南》在Linux系统运维和性能优化中,内核参数(sysctl)的配置至关重要,本文主要来聊聊如何配置与验证这些Linux内核参数,希望对大家有一定的帮助... 目录1. 引言2. 内核参数的作用3. 如何设置内核参数3.1 临时设置(重启失效)3.2 永久设置(重启仍生效

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

如何解决idea的Module:‘:app‘platform‘android-32‘not found.问题

《如何解决idea的Module:‘:app‘platform‘android-32‘notfound.问题》:本文主要介绍如何解决idea的Module:‘:app‘platform‘andr... 目录idea的Module:‘:app‘pwww.chinasem.cnlatform‘android-32

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

Java利用docx4j+Freemarker生成word文档

《Java利用docx4j+Freemarker生成word文档》这篇文章主要为大家详细介绍了Java如何利用docx4j+Freemarker生成word文档,文中的示例代码讲解详细,感兴趣的小伙伴... 目录技术方案maven依赖创建模板文件实现代码技术方案Java 1.8 + docx4j + Fr

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Linux卸载自带jdk并安装新jdk版本的图文教程

《Linux卸载自带jdk并安装新jdk版本的图文教程》在Linux系统中,有时需要卸载预装的OpenJDK并安装特定版本的JDK,例如JDK1.8,所以本文给大家详细介绍了Linux卸载自带jdk并... 目录Ⅰ、卸载自带jdkⅡ、安装新版jdkⅠ、卸载自带jdk1、输入命令查看旧jdkrpm -qa