[Golang]slice详解

2024-08-30 10:18
文章标签 golang 详解 slice

本文主要是介绍[Golang]slice详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据结构

slice的定义在$GOROOT/src/runtime/slice.go

type slice struct {array unsafe.Pointerlen   intcap   int
}

array指针指向底层数组, len表示切片长度, cap表示底层数组容量

slice创建

通过make创建

	//makeslice := make([]int, 5, 10)

在这里插入图片描述

通过数组创建

	//arrayarray := [10]int{}slice := array[0:5]

在这里插入图片描述

内存共享

slice通过数组切分时,两者会共用内存空间,此时slice[0] == array[5] : true
slice[1] == array[6] : true
,这个特性需要特别注意,尤其是在同时处理数组slice的过程中,如我们操作array[5] = 8,那么slice[0]此时也是8
在这里插入图片描述

当我们使用make方式进行切片初始化的时候经过了哪些处理呢?

	//makeslice := make([]int, 5, 10)

slice初始化

通过gdb断点可以看到,使用到了slice.go文件中的makeslice()方法,如下:

func makeslice(et *_type, len, cap int) unsafe.Pointer {mem, overflow := math.MulUintptr(et.size, uintptr(cap))if overflow || mem > maxAlloc || len < 0 || len > cap {// NOTE: Produce a 'len out of range' error instead of a// 'cap out of range' error when someone does make([]T, bignumber).// 'cap out of range' is true too, but since the cap is only being// supplied implicitly, saying len is clearer.// See golang.org/issue/4085.mem, overflow := math.MulUintptr(et.size, uintptr(len))if overflow || mem > maxAlloc || len < 0 {panicmakeslicelen()}panicmakeslicecap()}//以上是对内存溢出情况对panic处理return mallocgc(mem, et, true)
}

slice扩容

slice扩容的方法定义在$GOROOT/src/runtime/slice.gogrowslice方法中。

通用扩容策略

	newcap := old.capdoublecap := newcap + newcapif cap > doublecap {newcap = cap} else {if old.cap < 1024 {newcap = doublecap} else {// Check 0 < newcap to detect overflow// and prevent an infinite loop.for 0 < newcap && newcap < cap {newcap += newcap / 4}// Set newcap to the requested cap when// the newcap calculation overflowed.if newcap <= 0 {newcap = cap}}}
  • 如果新cap大小是当前cap的2倍以上,那么按照新cap进行扩容
  • cap小于1024,按照2倍扩容
  • cap大于1024,按照1.25倍扩容

通过代码来看下slice普通扩容过程中len、cap以及内存分配情况,如下:

// 普通扩容情况,这里是int32类型
func slice() {slice := make([]int32, 0)for i := 0; i < 10; i++ {fmt.Printf("seq=%v, len=%v, cap=%v,\t ptr=%p \t slice=%#v \n",i,len(slice),cap(slice),&slice,slice)slice = append(slice, int32(i))}
}

输出日志如下:

seq=0, len=0, cap=0ptr=0xc00011a018        slice=[]int32{} 
seq=1, len=1, cap=2ptr=0xc00011a018        slice=[]int32{0} 
seq=2, len=2, cap=2ptr=0xc00011a018        slice=[]int32{0, 1} 
seq=3, len=3, cap=4ptr=0xc00011a018        slice=[]int32{0, 1, 2} 
seq=4, len=4, cap=4ptr=0xc00011a018        slice=[]int32{0, 1, 2, 3} 
seq=5, len=5, cap=8ptr=0xc00011a018        slice=[]int32{0, 1, 2, 3, 4} 
seq=6, len=6, cap=8ptr=0xc00011a018        slice=[]int32{0, 1, 2, 3, 4, 5} 
seq=7, len=7, cap=8ptr=0xc00011a018        slice=[]int32{0, 1, 2, 3, 4, 5, 6} 
seq=8, len=8, cap=8ptr=0xc00011a018        slice=[]int32{0, 1, 2, 3, 4, 5, 6, 7} 
seq=9, len=9, cap=16ptr=0xc00011a018        slice=[]int32{0, 1, 2, 3, 4, 5, 6, 7, 8} 

日志解释:

  • seq是执行次序
  • len是当前已使用空间
  • cap是当前全部容量
  • ptr是切片的指针
  • slice是切片的内容

借助benchmark来查看下内存分配情况:

 %  go test -bench=SliceExpand -benchmem
goos: darwin
goarch: amd64
pkg: program/slice
cpu: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
BenchmarkSliceExpand-12          6996427               144.7 ns/op           248 B/op          5 allocs/op
PASS
ok      program/slice        1.195s

5 allocs/op表明10次循环过程中进行了5次的内存分配,其实这便是cap的扩容过程,即0 -> 1 -> 2 -> 4 -> 8 -> 16的5次扩容的内存操作。

特殊扩容策略

对于一些特殊类型,出于内存对齐充分利用的考虑,扩容过程中需要进行特殊处理,下面是特殊处理扩容的策略代码,其中最主要的是roundupsize()方法,它在本地存储了各长度的内存对其策略,根据type类型的size来指定扩容情况,这样是对内存友好的。

// Specialize for common values of et.size.// For 1 we don't need any division/multiplication.// For sys.PtrSize, compiler will optimize division/multiplication into a shift by a constant.// For powers of 2, use a variable shift.switch {case et.size == 1:lenmem = uintptr(old.len)newlenmem = uintptr(cap)capmem = roundupsize(uintptr(newcap))overflow = uintptr(newcap) > maxAllocnewcap = int(capmem)case et.size == sys.PtrSize:lenmem = uintptr(old.len) * sys.PtrSizenewlenmem = uintptr(cap) * sys.PtrSizecapmem = roundupsize(uintptr(newcap) * sys.PtrSize)overflow = uintptr(newcap) > maxAlloc/sys.PtrSizenewcap = int(capmem / sys.PtrSize)case isPowerOfTwo(et.size):var shift uintptrif sys.PtrSize == 8 {// Mask shift for better code generation.shift = uintptr(sys.Ctz64(uint64(et.size))) & 63} else {shift = uintptr(sys.Ctz32(uint32(et.size))) & 31}lenmem = uintptr(old.len) << shiftnewlenmem = uintptr(cap) << shiftcapmem = roundupsize(uintptr(newcap) << shift)overflow = uintptr(newcap) > (maxAlloc >> shift)newcap = int(capmem >> shift)default:lenmem = uintptr(old.len) * et.sizenewlenmem = uintptr(cap) * et.sizecapmem, overflow = math.MulUintptr(et.size, uintptr(newcap))capmem = roundupsize(capmem)newcap = int(capmem / et.size)}// Returns size of the memory block that mallocgc will allocate if you ask for the size.
func roundupsize(size uintptr) uintptr {if size < _MaxSmallSize {if size <= smallSizeMax-8 {return uintptr(class_to_size[size_to_class8[divRoundUp(size, smallSizeDiv)]])} else {return uintptr(class_to_size[size_to_class128[divRoundUp(size-smallSizeMax, largeSizeDiv)]])}}if size+_PageSize < size {return size}return alignUp(size, _PageSize)
}

通过代码来看下slice特殊扩容过程中len、cap以及内存分配情况,如下:

// 特殊扩容情况,这里是int8类型
func slice() {slice := make([]int8, 0)for i := 0; i < 10; i++ {fmt.Printf("seq=%v, len=%v, cap=%v,\t ptr=%p \t slice=%#v \n",i,len(slice),cap(slice),&slice,slice)slice = append(slice, int8(i))}
}

输出日志如下:

seq=0, len=0, cap=0ptr=0xc0000a8018        slice=[]int8{} 
seq=1, len=1, cap=8ptr=0xc0000a8018        slice=[]int8{0} 
seq=2, len=2, cap=8ptr=0xc0000a8018        slice=[]int8{0, 1} 
seq=3, len=3, cap=8ptr=0xc0000a8018        slice=[]int8{0, 1, 2} 
seq=4, len=4, cap=8ptr=0xc0000a8018        slice=[]int8{0, 1, 2, 3} 
seq=5, len=5, cap=8ptr=0xc0000a8018        slice=[]int8{0, 1, 2, 3, 4} 
seq=6, len=6, cap=8ptr=0xc0000a8018        slice=[]int8{0, 1, 2, 3, 4, 5} 
seq=7, len=7, cap=8ptr=0xc0000a8018        slice=[]int8{0, 1, 2, 3, 4, 5, 6} 
seq=8, len=8, cap=8ptr=0xc0000a8018        slice=[]int8{0, 1, 2, 3, 4, 5, 6, 7} 
seq=9, len=9, cap=16ptr=0xc0000a8018        slice=[]int8{0, 1, 2, 3, 4, 5, 6, 7, 8} 

借助benchmark来查看下内存分配情况:

% go test -bench=SliceExpand -benchmem                       
goos: darwin
goarch: amd64
pkg: program/slice
cpu: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
BenchmarkSliceExpand-12         25947428                47.71 ns/op           24 B/op          2 allocs/op
PASS
ok      program/slice        2.259s

2 allocs/op表明10次循环过程中进行了2次的内存分配,其实这便是cap的扩容过程,即0 -> 8 -> 16的2次扩容的内存操作。

小结

  • 切片的cap一般处理则按照2倍扩容,特殊处理按照roundupsize函数扩容,按照特殊处理的cap扩容减少了内存操作次数
  • 切片的指针没有发生变化,一直是在同一个数组下进行操作的

slice特殊用法

可以使用如下格式进行切片的使用和截取

语法示例
make[type, len, cap]sliceA := make([]int, 5, 10) //length = 5; capacity = 10
slice[start : end]sliceB := sliceA[0:5] //length = 5; capacity = 10
slice[start : ]sliceC := sliceA[0:] //length = 5; capacity = 10
slice[: end ]sliceD := sliceA[:5] //length = 5; capacity = 10
slice[start : end : cap]sliceE := sliceA[0:5:5] //length = 5; capacity = 5

总结

  • 创建切片时可跟据实际需要预分配容量, 尽量避免追加过程中扩容操作, 有利于提升性能;
  • 切片拷贝时需要判断实际拷贝的元素个数
  • 谨慎使用多个切片操作同一个数组, 以防读写冲突

参考

《Go专家编程》
Go slice扩容深度分析(来自掘金文章)

这篇关于[Golang]slice详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1120541

相关文章

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者

Linux内核之内核裁剪详解

《Linux内核之内核裁剪详解》Linux内核裁剪是通过移除不必要的功能和模块,调整配置参数来优化内核,以满足特定需求,裁剪的方法包括使用配置选项、模块化设计和优化配置参数,图形裁剪工具如makeme... 目录简介一、 裁剪的原因二、裁剪的方法三、图形裁剪工具四、操作说明五、make menuconfig

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

Golang使用etcd构建分布式锁的示例分享

《Golang使用etcd构建分布式锁的示例分享》在本教程中,我们将学习如何使用Go和etcd构建分布式锁系统,分布式锁系统对于管理对分布式系统中共享资源的并发访问至关重要,它有助于维护一致性,防止竞... 目录引言环境准备新建Go项目实现加锁和解锁功能测试分布式锁重构实现失败重试总结引言我们将使用Go作

详解Java中的敏感信息处理

《详解Java中的敏感信息处理》平时开发中常常会遇到像用户的手机号、姓名、身份证等敏感信息需要处理,这篇文章主要为大家整理了一些常用的方法,希望对大家有所帮助... 目录前后端传输AES 对称加密RSA 非对称加密混合加密数据库加密MD5 + Salt/SHA + SaltAES 加密平时开发中遇到像用户的

Springboot使用RabbitMQ实现关闭超时订单(示例详解)

《Springboot使用RabbitMQ实现关闭超时订单(示例详解)》介绍了如何在SpringBoot项目中使用RabbitMQ实现订单的延时处理和超时关闭,通过配置RabbitMQ的交换机、队列和... 目录1.maven中引入rabbitmq的依赖:2.application.yml中进行rabbit

C语言线程池的常见实现方式详解

《C语言线程池的常见实现方式详解》本文介绍了如何使用C语言实现一个基本的线程池,线程池的实现包括工作线程、任务队列、任务调度、线程池的初始化、任务添加、销毁等步骤,感兴趣的朋友跟随小编一起看看吧... 目录1. 线程池的基本结构2. 线程池的实现步骤3. 线程池的核心数据结构4. 线程池的详细实现4.1 初

Python绘制土地利用和土地覆盖类型图示例详解

《Python绘制土地利用和土地覆盖类型图示例详解》本文介绍了如何使用Python绘制土地利用和土地覆盖类型图,并提供了详细的代码示例,通过安装所需的库,准备地理数据,使用geopandas和matp... 目录一、所需库的安装二、数据准备三、绘制土地利用和土地覆盖类型图四、代码解释五、其他可视化形式1.

SpringBoot使用Apache POI库读取Excel文件的操作详解

《SpringBoot使用ApachePOI库读取Excel文件的操作详解》在日常开发中,我们经常需要处理Excel文件中的数据,无论是从数据库导入数据、处理数据报表,还是批量生成数据,都可能会遇到... 目录项目背景依赖导入读取Excel模板的实现代码实现代码解析ExcelDemoInfoDTO 数据传输

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2