[Golang]slice详解

2024-08-30 10:18
文章标签 golang 详解 slice

本文主要是介绍[Golang]slice详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据结构

slice的定义在$GOROOT/src/runtime/slice.go

type slice struct {array unsafe.Pointerlen   intcap   int
}

array指针指向底层数组, len表示切片长度, cap表示底层数组容量

slice创建

通过make创建

	//makeslice := make([]int, 5, 10)

在这里插入图片描述

通过数组创建

	//arrayarray := [10]int{}slice := array[0:5]

在这里插入图片描述

内存共享

slice通过数组切分时,两者会共用内存空间,此时slice[0] == array[5] : true
slice[1] == array[6] : true
,这个特性需要特别注意,尤其是在同时处理数组slice的过程中,如我们操作array[5] = 8,那么slice[0]此时也是8
在这里插入图片描述

当我们使用make方式进行切片初始化的时候经过了哪些处理呢?

	//makeslice := make([]int, 5, 10)

slice初始化

通过gdb断点可以看到,使用到了slice.go文件中的makeslice()方法,如下:

func makeslice(et *_type, len, cap int) unsafe.Pointer {mem, overflow := math.MulUintptr(et.size, uintptr(cap))if overflow || mem > maxAlloc || len < 0 || len > cap {// NOTE: Produce a 'len out of range' error instead of a// 'cap out of range' error when someone does make([]T, bignumber).// 'cap out of range' is true too, but since the cap is only being// supplied implicitly, saying len is clearer.// See golang.org/issue/4085.mem, overflow := math.MulUintptr(et.size, uintptr(len))if overflow || mem > maxAlloc || len < 0 {panicmakeslicelen()}panicmakeslicecap()}//以上是对内存溢出情况对panic处理return mallocgc(mem, et, true)
}

slice扩容

slice扩容的方法定义在$GOROOT/src/runtime/slice.gogrowslice方法中。

通用扩容策略

	newcap := old.capdoublecap := newcap + newcapif cap > doublecap {newcap = cap} else {if old.cap < 1024 {newcap = doublecap} else {// Check 0 < newcap to detect overflow// and prevent an infinite loop.for 0 < newcap && newcap < cap {newcap += newcap / 4}// Set newcap to the requested cap when// the newcap calculation overflowed.if newcap <= 0 {newcap = cap}}}
  • 如果新cap大小是当前cap的2倍以上,那么按照新cap进行扩容
  • cap小于1024,按照2倍扩容
  • cap大于1024,按照1.25倍扩容

通过代码来看下slice普通扩容过程中len、cap以及内存分配情况,如下:

// 普通扩容情况,这里是int32类型
func slice() {slice := make([]int32, 0)for i := 0; i < 10; i++ {fmt.Printf("seq=%v, len=%v, cap=%v,\t ptr=%p \t slice=%#v \n",i,len(slice),cap(slice),&slice,slice)slice = append(slice, int32(i))}
}

输出日志如下:

seq=0, len=0, cap=0ptr=0xc00011a018        slice=[]int32{} 
seq=1, len=1, cap=2ptr=0xc00011a018        slice=[]int32{0} 
seq=2, len=2, cap=2ptr=0xc00011a018        slice=[]int32{0, 1} 
seq=3, len=3, cap=4ptr=0xc00011a018        slice=[]int32{0, 1, 2} 
seq=4, len=4, cap=4ptr=0xc00011a018        slice=[]int32{0, 1, 2, 3} 
seq=5, len=5, cap=8ptr=0xc00011a018        slice=[]int32{0, 1, 2, 3, 4} 
seq=6, len=6, cap=8ptr=0xc00011a018        slice=[]int32{0, 1, 2, 3, 4, 5} 
seq=7, len=7, cap=8ptr=0xc00011a018        slice=[]int32{0, 1, 2, 3, 4, 5, 6} 
seq=8, len=8, cap=8ptr=0xc00011a018        slice=[]int32{0, 1, 2, 3, 4, 5, 6, 7} 
seq=9, len=9, cap=16ptr=0xc00011a018        slice=[]int32{0, 1, 2, 3, 4, 5, 6, 7, 8} 

日志解释:

  • seq是执行次序
  • len是当前已使用空间
  • cap是当前全部容量
  • ptr是切片的指针
  • slice是切片的内容

借助benchmark来查看下内存分配情况:

 %  go test -bench=SliceExpand -benchmem
goos: darwin
goarch: amd64
pkg: program/slice
cpu: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
BenchmarkSliceExpand-12          6996427               144.7 ns/op           248 B/op          5 allocs/op
PASS
ok      program/slice        1.195s

5 allocs/op表明10次循环过程中进行了5次的内存分配,其实这便是cap的扩容过程,即0 -> 1 -> 2 -> 4 -> 8 -> 16的5次扩容的内存操作。

特殊扩容策略

对于一些特殊类型,出于内存对齐充分利用的考虑,扩容过程中需要进行特殊处理,下面是特殊处理扩容的策略代码,其中最主要的是roundupsize()方法,它在本地存储了各长度的内存对其策略,根据type类型的size来指定扩容情况,这样是对内存友好的。

// Specialize for common values of et.size.// For 1 we don't need any division/multiplication.// For sys.PtrSize, compiler will optimize division/multiplication into a shift by a constant.// For powers of 2, use a variable shift.switch {case et.size == 1:lenmem = uintptr(old.len)newlenmem = uintptr(cap)capmem = roundupsize(uintptr(newcap))overflow = uintptr(newcap) > maxAllocnewcap = int(capmem)case et.size == sys.PtrSize:lenmem = uintptr(old.len) * sys.PtrSizenewlenmem = uintptr(cap) * sys.PtrSizecapmem = roundupsize(uintptr(newcap) * sys.PtrSize)overflow = uintptr(newcap) > maxAlloc/sys.PtrSizenewcap = int(capmem / sys.PtrSize)case isPowerOfTwo(et.size):var shift uintptrif sys.PtrSize == 8 {// Mask shift for better code generation.shift = uintptr(sys.Ctz64(uint64(et.size))) & 63} else {shift = uintptr(sys.Ctz32(uint32(et.size))) & 31}lenmem = uintptr(old.len) << shiftnewlenmem = uintptr(cap) << shiftcapmem = roundupsize(uintptr(newcap) << shift)overflow = uintptr(newcap) > (maxAlloc >> shift)newcap = int(capmem >> shift)default:lenmem = uintptr(old.len) * et.sizenewlenmem = uintptr(cap) * et.sizecapmem, overflow = math.MulUintptr(et.size, uintptr(newcap))capmem = roundupsize(capmem)newcap = int(capmem / et.size)}// Returns size of the memory block that mallocgc will allocate if you ask for the size.
func roundupsize(size uintptr) uintptr {if size < _MaxSmallSize {if size <= smallSizeMax-8 {return uintptr(class_to_size[size_to_class8[divRoundUp(size, smallSizeDiv)]])} else {return uintptr(class_to_size[size_to_class128[divRoundUp(size-smallSizeMax, largeSizeDiv)]])}}if size+_PageSize < size {return size}return alignUp(size, _PageSize)
}

通过代码来看下slice特殊扩容过程中len、cap以及内存分配情况,如下:

// 特殊扩容情况,这里是int8类型
func slice() {slice := make([]int8, 0)for i := 0; i < 10; i++ {fmt.Printf("seq=%v, len=%v, cap=%v,\t ptr=%p \t slice=%#v \n",i,len(slice),cap(slice),&slice,slice)slice = append(slice, int8(i))}
}

输出日志如下:

seq=0, len=0, cap=0ptr=0xc0000a8018        slice=[]int8{} 
seq=1, len=1, cap=8ptr=0xc0000a8018        slice=[]int8{0} 
seq=2, len=2, cap=8ptr=0xc0000a8018        slice=[]int8{0, 1} 
seq=3, len=3, cap=8ptr=0xc0000a8018        slice=[]int8{0, 1, 2} 
seq=4, len=4, cap=8ptr=0xc0000a8018        slice=[]int8{0, 1, 2, 3} 
seq=5, len=5, cap=8ptr=0xc0000a8018        slice=[]int8{0, 1, 2, 3, 4} 
seq=6, len=6, cap=8ptr=0xc0000a8018        slice=[]int8{0, 1, 2, 3, 4, 5} 
seq=7, len=7, cap=8ptr=0xc0000a8018        slice=[]int8{0, 1, 2, 3, 4, 5, 6} 
seq=8, len=8, cap=8ptr=0xc0000a8018        slice=[]int8{0, 1, 2, 3, 4, 5, 6, 7} 
seq=9, len=9, cap=16ptr=0xc0000a8018        slice=[]int8{0, 1, 2, 3, 4, 5, 6, 7, 8} 

借助benchmark来查看下内存分配情况:

% go test -bench=SliceExpand -benchmem                       
goos: darwin
goarch: amd64
pkg: program/slice
cpu: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
BenchmarkSliceExpand-12         25947428                47.71 ns/op           24 B/op          2 allocs/op
PASS
ok      program/slice        2.259s

2 allocs/op表明10次循环过程中进行了2次的内存分配,其实这便是cap的扩容过程,即0 -> 8 -> 16的2次扩容的内存操作。

小结

  • 切片的cap一般处理则按照2倍扩容,特殊处理按照roundupsize函数扩容,按照特殊处理的cap扩容减少了内存操作次数
  • 切片的指针没有发生变化,一直是在同一个数组下进行操作的

slice特殊用法

可以使用如下格式进行切片的使用和截取

语法示例
make[type, len, cap]sliceA := make([]int, 5, 10) //length = 5; capacity = 10
slice[start : end]sliceB := sliceA[0:5] //length = 5; capacity = 10
slice[start : ]sliceC := sliceA[0:] //length = 5; capacity = 10
slice[: end ]sliceD := sliceA[:5] //length = 5; capacity = 10
slice[start : end : cap]sliceE := sliceA[0:5:5] //length = 5; capacity = 5

总结

  • 创建切片时可跟据实际需要预分配容量, 尽量避免追加过程中扩容操作, 有利于提升性能;
  • 切片拷贝时需要判断实际拷贝的元素个数
  • 谨慎使用多个切片操作同一个数组, 以防读写冲突

参考

《Go专家编程》
Go slice扩容深度分析(来自掘金文章)

这篇关于[Golang]slice详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1120541

相关文章

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

java中反射(Reflection)机制举例详解

《java中反射(Reflection)机制举例详解》Java中的反射机制是指Java程序在运行期间可以获取到一个对象的全部信息,:本文主要介绍java中反射(Reflection)机制的相关资料... 目录一、什么是反射?二、反射的用途三、获取Class对象四、Class类型的对象使用场景1五、Class

golang 日志log与logrus示例详解

《golang日志log与logrus示例详解》log是Go语言标准库中一个简单的日志库,本文给大家介绍golang日志log与logrus示例详解,感兴趣的朋友一起看看吧... 目录一、Go 标准库 log 详解1. 功能特点2. 常用函数3. 示例代码4. 优势和局限二、第三方库 logrus 详解1.