SAT数学:练习题目两道

2024-08-29 20:38
文章标签 题目 练习 数学 sat 两道

本文主要是介绍SAT数学:练习题目两道,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  下面是两道SAT数学练习题目,都是关于代数方面的。SAT数学考试的出题方式和答题的思路都是和国内的数学题目有很大的区别的,所以大家在备考SAT数学考试的过程中,一定要多加练习才能熟练的掌握。下面我们就一起来看看这两道SAT数学练习题目的详细内容吧。

  Mathematics > Standard Multiple Choice

  Read the following SAT test question and then click on a button to select your answer.

  Which of the following statements must be true of the lengths of the segments on line above?

  Answer Choices

  (A only

  (B only

  (C only

  (D and only

  (E , , and

  The correct answer is B

  Explanation

  Consider each statement separately. For example, consider statement , . From the figure, you can see that segment is made up of the segments , , and . This tells you that cannot equal , since cannot equal zero. Statement is not true.

  Consider statement , . Since is between and , it follows that . Since is between and , it follows that . Therefore, . Since both and equal , they are equal to each other. Statement is true.

  Consider statement , . The left side of the equation, , is equivalent to . The right side of the equation, , is equivalent to . Since cannot equal zero, is not equal to . Statement is not true.

  Statement is the only one that is true.

  Read the following SAT test question and then click on a button to select your answer.

  The graph above shows the distribution of the number of days spent on business trips in 2010 by a group of employees of Company W. Based on the graph, what is the median number of days spent on business trips in 2010 for these employees?

  Answer Choices

  (A 22

  (B 22.5

  (C 22.75

  (D 23

  (E 23.5

  The correct answer is A

  Explanation

  Choice (A is correct. There are 5 + 6 + 5 + 8 + 6 + 1 = 31 employees represented in the graph. If the employees are put in order according to the number of days spent on business trips from least to greatest (or from greatest to least, the median number of days spent on business trips is the number of days spent by the employee in the middle of the list. Since 312 = 15.5, this is the 16th employee (there will be 15 employees before and 15 employees after the 16th employee in a list of 31 employees. From the graph, it can be seen that the 16th employee is in the group that spent 22 days on business trips (since 5 employees spent 20 days on business trips, 6 employees spent 21 days and 5 employees spent 22 days. Therefore, the median number of days spent on business trips in 2010 for these employees is 22

  以上就是这两道SAT数学练习题目的全部内容,都是包括了图形的识别的。大家可以在自己备考SAT数学考试的过程中仔细体会这些SAT数学题目的出题方式,以便更好更加有效率的解答SAT数学考试的题目。

这篇关于SAT数学:练习题目两道的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1118835

相关文章

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

uva 11044 Searching for Nessy(小学数学)

题意是给出一个n*m的格子,求出里面有多少个不重合的九宫格。 (rows / 3) * (columns / 3) K.o 代码: #include <stdio.h>int main(){int ncase;scanf("%d", &ncase);while (ncase--){int rows, columns;scanf("%d%d", &rows, &col

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

RabbitMQ练习(AMQP 0-9-1 Overview)

1、What is AMQP 0-9-1 AMQP 0-9-1(高级消息队列协议)是一种网络协议,它允许遵从该协议的客户端(Publisher或者Consumer)应用程序与遵从该协议的消息中间件代理(Broker,如RabbitMQ)进行通信。 AMQP 0-9-1模型的核心概念包括消息发布者(producers/publisher)、消息(messages)、交换机(exchanges)、

题目1254:N皇后问题

题目1254:N皇后问题 时间限制:1 秒 内存限制:128 兆 特殊判题:否 题目描述: N皇后问题,即在N*N的方格棋盘内放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在同一斜线上。因为皇后可以直走,横走和斜走如下图)。 你的任务是,对于给定的N,求出有多少种合法的放置方法。输出N皇后问题所有不同的摆放情况个数。 输入

题目1380:lucky number

题目1380:lucky number 时间限制:3 秒 内存限制:3 兆 特殊判题:否 提交:2839 解决:300 题目描述: 每个人有自己的lucky number,小A也一样。不过他的lucky number定义不一样。他认为一个序列中某些数出现的次数为n的话,都是他的lucky number。但是,现在这个序列很大,他无法快速找到所有lucky number。既然

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【Rust练习】12.枚举

练习题来自:https://practice-zh.course.rs/compound-types/enum.html 1 // 修复错误enum Number {Zero,One,Two,}enum Number1 {Zero = 0,One,Two,}// C语言风格的枚举定义enum Number2 {Zero = 0.0,One = 1.0,Two = 2.0,}fn m

MySql 事务练习

事务(transaction) -- 事务 transaction-- 事务是一组操作的集合,是一个不可分割的工作单位,事务会将所有的操作作为一个整体一起向系统提交或撤销请求-- 事务的操作要么同时成功,要么同时失败-- MySql的事务默认是自动提交的,当执行一个DML语句,MySql会立即自动隐式提交事务-- 常见案例:银行转账-- 逻辑:A给B转账1000:1.查询