RKNPU入门与实践 ---- 混合量化

2024-08-29 10:36

本文主要是介绍RKNPU入门与实践 ---- 混合量化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

一、混合量化

1.1 概念介绍 

1.1.1 hybrid_quantization_step1

1.1.2 hybrid_quantization_step2

二、实际编写程序 

2.1混合量化第一阶段 

2.2 混合量化第二阶段 

三、混合量化第一步接口参数proposal

前言

为什么要进行混合量化?
答案:提高模型每一层精度,提高模型精度 
从博文:
RKNPU2从入门到实践 --- 【6】模型评估----量化精度分析-CSDN博客我们得到了量化精度,如下图所示,下图表示的是连板推理时模型的量化精度,我们以input.25这一层为例,发现该层的runtime_error中的golden_err【计算的是上一层的输出层,也即input.25当前层的精度】只有0.930068,这是比较小的。

那对于这种问题,该如何处理呢?
这就需要混合量化来优化这个精度了。

一、混合量化

1.1 概念介绍 

1.1.1 hybrid_quantization_step1

混合量化第一阶段

      使用混合量化功能时,第一阶段调用的主要接口是 hybrid_quantization_step1,用于生成临时 模 型 文 件 ( {model_name}.model ) 、 数 据 文 件 ( {model_name}.data ) 和 量 化 配 置 文 件({model_name}.quantization.cfg)。接口详情如下:

1.1.2 hybrid_quantization_step2

混合量化第二阶段

用于使用混合量化功能时生成 RKNN 模型,接口详情如下: 

举例如下:

二、实际编写程序 

创建项目文件夹,以及相应的文件,并将相关资料放入项目文件夹中,如下图所示。 


在step1.py文件中,先写入如下代码:

from rknn.api import RKNNif __name__ == '__main__':# 第一步:创建RKNN对象rknn = RKNN()# 第二步:配置RKNN对象参数rknn.config(mean_values=[[123.675,116.28,103.53]],std_values=[[58.395,58.395,58.395]],target_platform='rk3588'# 其余参数保持默认即可)# 第三步:调用load_pytorch接口导入pt模型rknn.load_pytorch(model='./resnet18.pt',input_size_list=[[1, 3, 224, 224]])# 最后一步:释放RKNN对象rknn.release()

2.1混合量化第一阶段 

根据流程图,第四步为混合量化的step1,对应的代码为:

添入step1代码后的整体代码如下:

from rknn.api import RKNNif __name__ == '__main__':# 第一步:创建RKNN对象rknn = RKNN()# 第二步:配置RKNN对象参数rknn.config(mean_values=[[123.675,116.28,103.53]],std_values=[[58.395,58.395,58.395]],target_platform='rk3588'# 其余参数保持默认即可)# 第三步:调用load_pytorch接口导入pt模型rknn.load_pytorch(model='./resnet18.pt',input_size_list=[[1, 3, 224, 224]])# 使用hybrid_quantization_step1 接口进行混合量化的第一步rknn.hybrid_quantization_step1(dataset='dataset.txt', # 表示模型量化所需要的数据集rknn_batch_size=-1, # 表示自动调整模型输入batch数量proposal=False, # 默认为False。设置为True,可以自动产生混合量化的配置建议值proposal_dataset_size=1)# 最后一步:释放RKNN对象rknn.release()

接下来运行该程序:
 得到如下图:

我们要对得到的resnet18.quantization.cfg文件进行修改。 该文件内容如下所示:

      修改的地方为该文件的第一行,即custom_quantize_layers:{},将input.25层由量化层转换为非量化层,如下所示:

2.2 混合量化第二阶段 

 在step2.py文件中编写程序:

from rknn.api import RKNNif __name__ == '__main__':# 创建RKNN对象rknn = RKNN()# 直接调用hybrid_quantization_step2接口进行混合量化的第二个步骤rknn.hybrid_quantization_step2(model_input='resnet18.model',# 表示第一步生成的模型文件data_input='resnet18.data', #表示第一步生成的配置文件model_quantization_cfg='resnet18.quantization.cfg' # 表示第一步生成的量化配置文件)# 使用量化精度分析接口评估混合量化后的RKNN模型rknn.accuracy_analysis(inputs=['./space_shuttle_224.jpg'],output_dir='./snapshot',target='rk3588')# 调用RKNN模型导出接口(方便后续模型部署)rknn.export_rknn(export_path='./resnet18.rknn')#释放RKNN对象rknn.release()

运行step2.py程序: 

此处有bug,后续更新!!

上图来自于:06_RKNN 模型评估-量化精度分析_哔哩哔哩_bilibili
可以看到,input.25层的golden_err从原来的0.930068变为了现在的0.999746。精度变高。
将经过混合量化和没有经过混合量化的进行对比,这里贴出没有经过混合量化的精度信息截图。

      我们从上图中可以看到,input.25这一层的下一层是142层,但是在经过混合量化之后,我们发现input.25层的下一层并不是142层,而是input.25__int8,这一层在input.25层和142层中间,这是为什么呢?这会带来什么样的后果呢?
      由于142层的输入类型为int8类型,而input.25已经变为float16类型,故浮点数转换为int8类型,因此才会有input.25__int8这一层的出现。我们看到,input.25__int8层的golden_err只有0.930005。因此,这么一操作,精度不增反减了,那该如何补救呢?
      我们干脆直接跳过input.25__int8这一层,因此修改.cfg文件,如下图所示:

加入的 '142': float16 表示将input.25层的输出层,即142层由量化层变为非量化层。
然后重新运行step2.py程序,得到(下图是将终端打印信息拷贝到记事本中,便于观察):

可以看到,input.25 层周围的精度值都变高了,这也就证明了混合量化效果有效。
以上是对 resnet18.pt 模型的某一层进行混合量化。若对模型进行更多层的混合量化,那么模型的效果会大大提高。

三、混合量化第一步接口参数proposal

      在上面,proposal这个参数的取值为False,导致了我们在混合量化第二阶段修改.cfg文件时需要手动去修改。
      那么我们将这个参数取值设置为True,又会有怎样的变化呢?

随后运行step1.py程序,得到:

我们来看看.cfg文件有什么变化:

      我们发现.cfg文件中的custom_quantize_layers由proposal取值为False时的空变为了proposal取值为True时的好多内容。
这相当于是手动筛选精度差的层变为了自动筛选精度差的层。何乐而不为呢? 

这篇关于RKNPU入门与实践 ---- 混合量化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1117613

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表

python实现简易SSL的项目实践

《python实现简易SSL的项目实践》本文主要介绍了python实现简易SSL的项目实践,包括CA.py、server.py和client.py三个模块,文中通过示例代码介绍的非常详细,对大家的学习... 目录运行环境运行前准备程序实现与流程说明运行截图代码CA.pyclient.pyserver.py参

使用C++实现单链表的操作与实践

《使用C++实现单链表的操作与实践》在程序设计中,链表是一种常见的数据结构,特别是在动态数据管理、频繁插入和删除元素的场景中,链表相比于数组,具有更高的灵活性和高效性,尤其是在需要频繁修改数据结构的应... 目录一、单链表的基本概念二、单链表类的设计1. 节点的定义2. 链表的类定义三、单链表的操作实现四、

Spring Boot统一异常拦截实践指南(最新推荐)

《SpringBoot统一异常拦截实践指南(最新推荐)》本文介绍了SpringBoot中统一异常处理的重要性及实现方案,包括使用`@ControllerAdvice`和`@ExceptionHand... 目录Spring Boot统一异常拦截实践指南一、为什么需要统一异常处理二、核心实现方案1. 基础组件

SpringBoot项目中Maven剔除无用Jar引用的最佳实践

《SpringBoot项目中Maven剔除无用Jar引用的最佳实践》在SpringBoot项目开发中,Maven是最常用的构建工具之一,通过Maven,我们可以轻松地管理项目所需的依赖,而,... 目录1、引言2、Maven 依赖管理的基础概念2.1 什么是 Maven 依赖2.2 Maven 的依赖传递机

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J