【Flink】状态编程: 订单超时告警

2024-08-29 10:32

本文主要是介绍【Flink】状态编程: 订单超时告警,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、基础概念
  • 二、Flink状态编程
    • 1、支持的状态类型
    • 2、Managed Keyed State
      • 六种类型
      • 基本API
      • 状态的生命周期
    • 3、Managed Operator State
  • 三、案例:订单延迟告警统计
    • 1、需求描述
    • 2、需求分析
    • 3、数据与模型
    • 4、详细实现

Flink状态编程学习小结,附订单超时告警实战案例。

更多内容详见:https://github.com/pierre94/flink-notes

一、基础概念

在Flink架构体系中,有状态计算可以说是Flink非常重要的特性之一。

image.png

有状态计算是指:

在程序计算过程中,在Flink程序内部存储计算产生的中间结果,并提供给后续Function或算子计算结果使用。(如下图所示)

image.png

无状态计算实现的复杂度相对较低,实现起来较容易,但是无法完成提到的比较复杂的业务场景:

  • CEP(复杂事件处理):获取符合某一特定事件规则的事件,状态计算就可以将接入的事件进行存储,然后等待符合规则的事件触发
  • 最大值、均值等聚合指标(如pv,uv): 需要利用状态来维护当前计算过程中产生的结果,例如事件的总数、总和以及最大,最小值等
  • 机器学习场景,维护当前版本模型使用的参数
  • 其他需要使用历史数据的计算

二、Flink状态编程

1、支持的状态类型

Flink根据数据集是否根据Key进行分区,将状态分为Keyed State和Operator State(Non-keyed State)两种类型。

其中Keyed State是Operator State的特例,可以通过Key Groups进行管理,主要用于当算子并行度发生变化时,自动重新分布Keyed Sate数据

同时在Flink中Keyed State和Operator State均具有两种形式:

  • 一种为托管状态(ManagedState)形式,由Flink Runtime中控制和管理状态数据,并将状态数据转换成为内存Hashtables或RocksDB的对象存储,然后将这些状态数据通过内部的接口持久化到Checkpoints中,任务异常时可以通过这些状态数据恢复任务。
  • 另外一种是原生状态(Raw State)形式,由算子自己管理数据结构,当触发Checkpoint过程中,Flink并不知道状态数据内部的数据结构,只是将数据转换成bytes数据存储在Checkpoints中,当从Checkpoints恢复任务时,算子自己再反序列化出状态的数据结构。

在Flink中推荐用户使用Managed State管理状态数据,主要原因是Managed State能够更好地支持状态数据的重平衡以及更加完善的内存管理。

2、Managed Keyed State

六种类型

Managed Keyed State 又分为如下六种类型:

image.png

FoldingState已经被标注为deprecated

基本API

在Flink中需要通过创建StateDescriptor来获取相应State的操作类。如下方代码,构建一个ValueState:

lazy val isPayedState: ValueState[Boolean] = getRuntimeContext.getState(new ValueStateDescriptor[Boolean]("is-payed-state", classOf[Boolean]))

其中对ValueState可以增删改查:

# 获取状态值
val isPayed = isPayedState.value()# 更新状态值
isPayedState.update(true)# 释放状态值
isPayedState.clear()

状态的生命周期

对于任何类型Keyed State都可以设定状态的生命周期(TTL),以确保能够在规定时间内及时地清理状态数据。

实现方法:

1、生成StateTtlConfig配置

2、将StateTtlConfig配置传入StateDescriptor中的enableTimeToLive方法中即可

import org.apache.flink.api.common.state.StateTtlConfig
import org.apache.flink.api.common.state.ValueStateDescriptor
import org.apache.flink.api.common.time.Timeval ttlConfig = StateTtlConfig.newBuilder(Time.seconds(1)).setUpdateType(StateTtlConfig.UpdateType.OnCreateAndWrite).setStateVisibility(StateTtlConfig.StateVisibility.NeverReturnExpired).buildval stateDescriptor = new ValueStateDescriptor[String]("text state", classOf[String])
stateDescriptor.enableTimeToLive(ttlConfig)

StateTtlConfig的详细配置见: https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/stream/state/state.html#state-time-to-live-ttl

3、Managed Operator State

Operator State是一种non-keyed state,与并行的操作算子实例相关联,例如在KafkaConnector中,每个Kafka消费端算子实例都对应到Kafka的一个分区中,维护Topic分区和Offsets偏移量作为算子的Operator State。在Flink中可以实现Checkpointed-Function或者ListCheckpointed<T extends Serializable>两个接口来定义操作Managed Operator State的函数。

(待补充……)

三、案例:订单延迟告警统计

1、需求描述

需求与数据来自《大数据技术之电商用户行为分析》

在电商平台中,最终创造收入和利润的是用户下单购买的环节;更具体一点,是用户真正完成支付动作的时候。用户下单的行为可以表明用户对商品的需求,但在现实中,并不是每次下单都会被用户立刻支付。当拖延一段时间后,用户支付的意愿会降低。

所以为了让用户更有紧迫感从而提高支付转化率,同时也为了防范订单支付环节的安全风险,电商网站往往会对订单状态进行监控,设置一个失效时间(比如 15 分钟),如果下单后一段时间仍未支付,订单就会被取消。

此时需要给用户发送一个信息提醒用户,提高支付转换率!

2、需求分析

本需求可以使用CEP来实现,但这里推荐使用process function原生的状态编程。

问题可以简化成: 在pay事件超时未发生的情况下,输出超时报警信息。

一个简单的思路是:

  1. 在订单的 create 事件到来后注册定时器,15分钟后触发;
  2. 用一个布尔类型的 Value 状态来作为标识位,表明 pay 事件是否发生过。
  3. 如果 pay 事件已经发生,状态被置为true,那么就不再需要做什么操作;
  4. 而如果 pay 事件一直没来,状态一直为false,到定时器触发时,就应该输出超时报警信息。

3、数据与模型

示例数据:

34729,create,,1558430842
34730,create,,1558430843
34729,pay,sd76f87d6,1558430844
34730,modify,3hu3k2432,1558430845
34731,create,,1558430846
34731,pay,35jue34we,1558430849
34732,create,,1558430852
34733,create,,1558430855
34734,create,,1558430859
34734,create,,1558431000
34733,pay,,1558431000             
34732,pay,,1558449999   

我们可以得到Flink的输入与输出类

// 定义输

这篇关于【Flink】状态编程: 订单超时告警的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1117606

相关文章

SpringSecurity JWT基于令牌的无状态认证实现

《SpringSecurityJWT基于令牌的无状态认证实现》SpringSecurity中实现基于JWT的无状态认证是一种常见的做法,本文就来介绍一下SpringSecurityJWT基于令牌的无... 目录引言一、JWT基本原理与结构二、Spring Security JWT依赖配置三、JWT令牌生成与

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu

Feign Client超时时间设置不生效的解决方法

《FeignClient超时时间设置不生效的解决方法》这篇文章主要为大家详细介绍了FeignClient超时时间设置不生效的原因与解决方法,具有一定的的参考价值,希望对大家有一定的帮助... 在使用Feign Client时,可以通过两种方式来设置超时时间:1.针对整个Feign Client设置超时时间

关于WebSocket协议状态码解析

《关于WebSocket协议状态码解析》:本文主要介绍关于WebSocket协议状态码的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录WebSocket协议状态码解析1. 引言2. WebSocket协议状态码概述3. WebSocket协议状态码详解3

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.

Python异步编程中asyncio.gather的并发控制详解

《Python异步编程中asyncio.gather的并发控制详解》在Python异步编程生态中,asyncio.gather是并发任务调度的核心工具,本文将通过实际场景和代码示例,展示如何结合信号量... 目录一、asyncio.gather的原始行为解析二、信号量控制法:给并发装上"节流阀"三、进阶控制

Flutter监听当前页面可见与隐藏状态的代码详解

《Flutter监听当前页面可见与隐藏状态的代码详解》文章介绍了如何在Flutter中使用路由观察者来监听应用进入前台或后台状态以及页面的显示和隐藏,并通过代码示例讲解的非常详细,需要的朋友可以参考下... flutter 可以监听 app 进入前台还是后台状态,也可以监听当http://www.cppcn

Java中实现订单超时自动取消功能(最新推荐)

《Java中实现订单超时自动取消功能(最新推荐)》本文介绍了Java中实现订单超时自动取消功能的几种方法,包括定时任务、JDK延迟队列、Redis过期监听、Redisson分布式延迟队列、Rocket... 目录1、定时任务2、JDK延迟队列 DelayQueue(1)定义实现Delayed接口的实体类 (

MySQL 中的服务器配置和状态详解(MySQL Server Configuration and Status)

《MySQL中的服务器配置和状态详解(MySQLServerConfigurationandStatus)》MySQL服务器配置和状态设置包括服务器选项、系统变量和状态变量三个方面,可以通过... 目录mysql 之服务器配置和状态1 MySQL 架构和性能优化1.1 服务器配置和状态1.1.1 服务器选项