《hadoop权威指南》笔记二: hdfs读写过程剖析

2024-08-29 10:32

本文主要是介绍《hadoop权威指南》笔记二: hdfs读写过程剖析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于《hadoop权威指南》第四版。
温故知新

一、hdfs简介

Hadoop分布式文件系统(HDFS)被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统。

hdfs的设计如下:

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

image.png

ps: hdfs只是hadoop文件系统实现的一种,其他还有:

image.png

二、hdfs读写分析

剖析hdfs的读写过程,是hdfs数据写入读取性能优化的基础。

1、读取过程

image.png

客户端角度

对客户端来说,读取hdfs上的文件就是创建一个fs下的FileSystem对象,并open文件。

hdfs角度

对hdfs而言,详细过程如下:

1、FileSystem对象就是DistributedFileSystem的一个实例。

2、DistributedFileSystem通过rpc调用namenode来获取文件初始块的位置。会根据集群网络拓扑图返回最近的datanode节点(假如客户端本身就是datanode时会直接本地读取数据)

(当客户端并发过多时hdfs是如何解决压力?)

3、DistributedFileSystem类返回一个FSDataInputStream对象(封装了DFSInputStream,可以流式地读取数据),管理datanode和namenode的I/O

4\5、反复调用read方法,当这个块读完的时候会读取下一个块的最佳datanode。(整队客户端是透明的)

6、读取完成调用close方法,结束读取。

异常情况

正常情况下的读取如上所述,但当客户端与datanode通信异常的时候,就复杂的多:

1、会尝试从这块最相邻的datanode读取数据。

2、同时客户端也会记住这个故障datanode,以保证后面不会反复读取该节点的块。

3、客户端同时会校验数据是否完整,不完整的话从其他节点重新读取,同时将损坏情况上报给namenode

重点:

每个客户端可以直接在datanode上检索数据,且namenode只需告知客户端最佳的datanode。所以数据是不会经过namenode的中转。

目前hadoop并不适合跨IDC部署

2、写入过程

image.png

写入过程相对复杂一些,这里详细记录一下:

客户端角度

与读取过程类似,创建一个fs下的FileSystem对象,create新建一个文件,然后write。

hdfs角度

1、与读取时类似,都要先生成DistributedFileSystem

2、client通过rpc调用namenode的create方法,在命名空间新增一个文件(此时hdfs中还没有实际的数据块)。 namenode会执行检查,保证文件是不存在的以及客户端是有权限创建目录,否则就会抛出IOException异常。

3、步骤2成功后DistributedFileSystem会返回一个FSDataOutputSream对象,此时可以写入数据。

4、FSDataOutputSream会将数据拆分成一个个的数据包,并写入内部的队列。另外一个对象DataStreamer会挑选出合适存储数据副本的一组datanode写入数据。在多副本情况下,第一个datanode收到数据后,它会把数据传送到下一个datanode,依次异步复制。

5、FSDataOutputSream内部也维护了一个确认队列,来等待datanode收到确认回执,然后才会从确认队列删除数据。

6、客户端写完数据后,会调用FSDataOutputSream的close方法,将所有数据写入到datanode的管线。

7、DistributedFileSystem告知namenode客户端已经写完数据,等待确认。namenode知道每个文件的存储节点情况,当成功写入最小的副本数量(dfs.namenode.replication.min配置,默认为1)时,namenode会返回写入成功。

异常情况

当任何datanode在数据写入期间发生故障,则执行以下操作(客户端无感知):

1、关闭写入管线,将队列里面的数据包添加回数据队列的最前端,以保证下游datanode不会漏数据。

2、为存储在另外一个正常datanode的当前数据块指定一个新的标识,并将该标识传递给namenode以保障故障datanode在恢复后可以删除存储的部分数据块。

3、管线中删除故障datanode,剩余正常的datanode构成临时新的管线。而namenode发现副本数据不足时,会再创建一个新的副本。

4、后续数据会继续正常处理。

副本选择

namenode如何选择在哪个datanode存储副本? 一般需要权衡:

  • 可靠性
  • 写入带宽
  • 读取带宽

同机架服务器之间的读取带宽是非常高的,跨数据中心虽然可以增加数据冗余和可靠性,但带宽消耗极大。

hadoop默认的策略下,同一份数据不同副本尽可能避免落到一个机架上面,这样达到冗余与性能的权衡。

三、数据一致性问题

hdfs并不严格满足POSIX

hdfs为了性能,牺牲了一些POSIX的要求。新建一个文件时,它能在文件系统中立即可见,如:

Path p = new Path("p");
Fs.create(p);
assertThat(fs.exists(p),is(true));

但是写入的内容并不能保证立即可见,即使数据流已经刷新并存储

OutputStream out = fs.create(p);
out.write("content".getBytes("UTF-8"));
out.flush();
assertThat(fs.getFileStatus(p).getLen(),is(0L));

当数据写入超过一个块之后,第一块数据对新的reader是可见的,但当前写入的块对其他reader不可见。

hflush()与hsync()

FSDataOutputStream提供了hflush()方法,强行将所有的缓存刷新到datanode中,当hflush()返回成功,则所有新的reader可见。

FSDataOutputStream out = fs.create(p);
out.write("content".getBytes("UTF-8"));
out.hflush();
assertThat(fs.getFileStatus(p).getLen(),is(((long)"content".length())));

但是hflush不保证datanode已经将数据写入到磁盘(数据仅在内存中),为了确保数据写入到磁盘中,我们还可以使用hsync()替代(类似POSIX的fsync())。

当然 hflush()与hsync() 都是会带来更大开销,需要我们不断测试度量不同频率下调用时的性能,来选择一个最终合适的调用频率。

注意:Hadoop 1.x中hflush()被称为sync、hsync()不存在!

四、其他问题

1、put与copyFromLocal的区别

http://stackoverflow.com/questions/7811284/difference-between-hadoop-fs-put-and-hadoop-fs-copyfromlocal

在Hadoop 2.7.2版本测试发现确实无区别,但是3.X新版本有修改,增加了一个线程池并发拷贝的功能

https://github.com/apache/hadoop/blob/7a3188d054481b9bd563e337901e93476303ce7f/hadoop-common-project/hadoop-common/src/main/java/org/apache/hadoop/fs/shell/CopyCommands.java

2、Ozone

Hadoop 社区推出了新的分布式存储系统-Ozone。Ozone能够轻松管理小文件和大文件,是一个分布式Key-value 对象存储系统。值得关注!

这篇关于《hadoop权威指南》笔记二: hdfs读写过程剖析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1117603

相关文章

PostgreSQL中rank()窗口函数实用指南与示例

《PostgreSQL中rank()窗口函数实用指南与示例》在数据分析和数据库管理中,经常需要对数据进行排名操作,PostgreSQL提供了强大的窗口函数rank(),可以方便地对结果集中的行进行排名... 目录一、rank()函数简介二、基础示例:部门内员工薪资排名示例数据排名查询三、高级应用示例1. 每

Spring boot整合dubbo+zookeeper的详细过程

《Springboot整合dubbo+zookeeper的详细过程》本文讲解SpringBoot整合Dubbo与Zookeeper实现API、Provider、Consumer模式,包含依赖配置、... 目录Spring boot整合dubbo+zookeeper1.创建父工程2.父工程引入依赖3.创建ap

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于

SpringBoot结合Docker进行容器化处理指南

《SpringBoot结合Docker进行容器化处理指南》在当今快速发展的软件工程领域,SpringBoot和Docker已经成为现代Java开发者的必备工具,本文将深入讲解如何将一个SpringBo... 目录前言一、为什么选择 Spring Bootjavascript + docker1. 快速部署与

创建Java keystore文件的完整指南及详细步骤

《创建Javakeystore文件的完整指南及详细步骤》本文详解Java中keystore的创建与配置,涵盖私钥管理、自签名与CA证书生成、SSL/TLS应用,强调安全存储及验证机制,确保通信加密和... 目录1. 秘密键(私钥)的理解与管理私钥的定义与重要性私钥的管理策略私钥的生成与存储2. 证书的创建与

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

PowerShell中15个提升运维效率关键命令实战指南

《PowerShell中15个提升运维效率关键命令实战指南》作为网络安全专业人员的必备技能,PowerShell在系统管理、日志分析、威胁检测和自动化响应方面展现出强大能力,下面我们就来看看15个提升... 目录一、PowerShell在网络安全中的战略价值二、网络安全关键场景命令实战1. 系统安全基线核查

Java操作Word文档的全面指南

《Java操作Word文档的全面指南》在Java开发中,操作Word文档是常见的业务需求,广泛应用于合同生成、报表输出、通知发布、法律文书生成、病历模板填写等场景,本文将全面介绍Java操作Word文... 目录简介段落页头与页脚页码表格图片批注文本框目录图表简介Word编程最重要的类是org.apach

C#读写文本文件的多种方式详解

《C#读写文本文件的多种方式详解》这篇文章主要为大家详细介绍了C#中各种常用的文件读写方式,包括文本文件,二进制文件、CSV文件、JSON文件等,有需要的小伙伴可以参考一下... 目录一、文本文件读写1. 使用 File 类的静态方法2. 使用 StreamReader 和 StreamWriter二、二进

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)